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This paper develops a Hamming class formalism for the semiconservative quasispecies equations with
imperfect lesion repair, first presented and analytically solved in Y. Brumer and E.I. Shakhnovich(q-bio.GN/
0403018, 2004). Starting from the quasispecies dynamics over the space of genomes, we derive an equivalent
dynamics over the space of ordered sequence pairs. From this set of equations, we are able to derive the infinite
sequence length form of the dynamics for a class of fitness landscapes defined by a master genome. We use
these equations to solve for a generalized single-fitness-peak landscape, where the master genome can sustain
a maximum number of lesions and remain viable. We determine the mean equilibrium fitness and error
threshold for this class of landscapes, and show that when lesion repair is imperfect, semiconservative repli-
cation displays characteristics from both conservative replication and semiconservative replication with perfect
lesion repair. The work presented here provides a formulation of the model which greatly facilitates the
analysis of a relatively broad class of fitness landscapes, and thus serves as a convenient springboard into
biological applications of imperfect lesion repair.
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I. INTRODUCTION

The quasispecies model has been a subject of ongoing
research in the field of evolutionary dynamics for over three
decades[1–22]. The model was originally introduced by
Eigen in 1971[1] as a way of accounting for the observed
distribution of genotypes in evolution experiments with the
Qb RNA-virus [23]. It has since been applied to systems
other than RNA genome evolution[18,19,24–30], and has
even proven to give quantitative results in certain cases
[18,19].

The central result of the theory is the existence of an
upper mutational threshold beyond which natural selection
can no longer occur[1–3]. Below this threshold, a replicating
population of genomes will eventually produce, over many
generations, a “cloud” of closely related genomes clustered
about one or a few fast replicating genomes. These “clouds”
are termed quasispecies, and are characteristic of the evolu-
tionary dynamics of many viruses, such as HIV[19,31–33].

Above the mutational threshold, natural selection can no
longer act to localize the population about the fast replicating
genomes, and delocalization occurs over the entire genome
space. This localization to delocalization transition is known
as the error catastrophe[1–3], and it corresponds to the dis-
appearance of any viable strains in the population. The error

catastrophe has been observed experimentally[33,34], and is
believed to form the basis for a number of antiviral therapies
[31–33].

In a recent paper[27], Tannenbaum, Deeds, and Shakh-
novich developed the quasispecies equations appropriate for
describing DNA-based genomes. Such a description is a nec-
essary first step toward making the quasispecies model a
quantitative tool for analyzing the evolutionary dynamics of
DNA-based life. The original quasispecies equations were
developed to deal with the replication dynamics of single-
stranded genomes, and hence assumedconservativereplica-
tion. In conservative replication, the original genome is pre-
served by replication. Double-stranded DNA, by contrast,
replicatessemiconservatively[35–37]. In semiconservative
replication, the original genome is not preserved by replica-
tion. Rather, the two strands of the genome separate, and
each forms a template for the synthesis of the corresponding
daughter strands[35]. Because errors can occur during the
synthesis of both daughter strands, in principle the original
genome is destroyed by the replication process, so it is pos-
sible that both daughter genomes will differ from the parent.
Figure 1 illustrates the difference between these two modes
of replication.

The semiconservative quasispecies equations in[27] were
derived under the assumption of perfect lesion repair. Briefly,
after replication has occurred, and both daughter genomes
have been synthesized, it is possible that there are still mis-
matched base-pairs in the daughter genomes which were not
corrected by various error-correcting mechanisms of the rep-
lication process itself(two such error-correcting mechanisms
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are the built-in proofreading capabilities of the DNA repli-
cases, and the mismatch repair pathway) [35]. Any remain-
ing mismatches will result in lesions along the DNA chain,
which are recognized and repaired by various maintenance
and repair enzymes present in the cell. However, after repli-
cation has occurred, it is no longer possible to distinguish
between parent and daughter strands, and so the lesion is
correctly repaired with a probability of 1/2.

Lesion repair, however, is in general not perfect. Indeed,
while cells have evolved DNA repair mechanisms to deal
with the presence of lesions(nucleotide excision repair, for
instance) [35], they have also evolved mechanisms which
allow the cell to remain viable even with lesions in the DNA
genome. For example, transcription can often still occur in
the presence of lesions due to enzymes which are able to
“read past” the effected region of DNA[35]. Therefore the
incorporation of imperfect lesion repair is a potentially im-
portant extension of the semiconservative quasispecies
model.

In a recent work[30], Brumer and Shakhnovich intro-
duced the semiconservative quasispecies equations with im-
perfect lesion repair. The authors postulated that imperfect
lesion repair may be necessary to reconcile the high point-
mutation rates observed in certain cancers(the microsatellite
instability, or MIN, tumors) with semiconservative replica-
tion [30]. The argument stems from the fact that semiconser-
vative replication is considerably less robust to the effect of
replication errors than is conservative replication[27]. How-
ever, mutational robustness can be increased by reducing the
efficiency of lesion repair. Imperfect lesion repair breaks the
perfect correlation between the parent and daughter strands,
thereby allowing for better preservation of genetic informa-
tion [30]. Thus semiconservative replication with imperfect
lesion repair can behave more like a conservatively replicat-
ing system in certain cases[30].

The purpose of this paper is to develop a Hamming class
formulation of the semiconservative quasispecies equations
with imperfect lesion repair, in analogy with the Hamming
class formulation developed for the original semiconserva-
tive quasispecies equations[27]. Such a formulation greatly
facilitates the analysis of a broad class of “master-genome”-
based landscapes, and may therefore serve as a convenient

springboard into biological applications of imperfect lesion
repair(an important example of interest to us is the modeling
of age-dependent chromosome segregation during stem cell
division, the so-called “immortal strand hypothesis”[36]).

This paper is thus a continuation and extension of the
work presented in[27,30], and is organized as follows: In the
following section, we present the finite genome length qua-
sispecies equations for arbitrary lesion repair. While we can-
not convert the dynamics over the space of double-stranded
genomes to the space of single strands, as was possible in
[27], we can nevertheless make an analogous transformation
and convert the dynamics to the space of ordered strand
pairs. In Sec. III, we go on to establish the infinite sequence
length form of the equations for a class of fitness landscapes
which are defined by a single, “master” genome. In Sec. IV,
we explicitly solve for the equilibrium behavior of a subclass
of these landscapes, which we call a generalized single-
fitness-peak landscape. We also determine the critical muta-
tion rate necessary for inducing error catastrophe for this
class of fitness landscapes. In Sec. V, we explore the equilib-
rium behavior with specific examples and discuss similarities
and differences with both conservative and semiconservative
replication with perfect lesion repair. We also present results
from stochastic simulations of finite populations of replicat-
ing organisms, in order to corroborate the theory developed
in this paper. Finally, in Sec. VI we conclude with a sum-
mary of our results and discuss plans for future research.

II. THE FINITE SEQUENCE LENGTH EQUATIONS

A. From double-stranded genomes to ordered sequence-pairs

Double-stranded DNA consists of two complementary,
antiparallel strands[27,35]. Each DNA genome is defined by
the pair of strandshs ,s̄j=hs̄ ,sj, where s̄ denotes the
complement ofs. If each base is drawn from an alphabet of

size S (whereS=4 due to Watson-Crick pairing), and if b̄i
denotes the complement of a basebi, then if s=b1¯bL, we

have, by the antiparallel nature of DNA, thats̄= b̄L¯ b̄1.
The replication of a DNA genomehs ,s̄j may be divided

into three stages.
(1) Strand separation—The genome unzips to produce

two parent strands,s and s̄.
(2) Daughter strand synthesis—Each parent strand serves

as the template for the synthesis of a complementary daugh-
ter strand.

(3) Lesion repair after cell division.
An illustration of semiconservative replication may be found
in [27].

This replication mechanism leads to the semiconservative
quasispecies equations developed in[27]:

dxhs,s̄j

dt
= − fkhs,s̄j + k̄stdgxhs,s̄j + o

hs8,s̄8j

khs8,s̄8jxhs8,s̄8j

3 fpss8,hs,s̄jd + pss̄8,hs,s̄jdg, s1d

wherexhs,s̄j denotes the fraction of the population with ge-
nome hs ,s̄j, khs,s̄j denotes the first-order growth rate con-

FIG. 1. (Color online) Comparison between conservative and
semiconservative replication.P denotes the parent strands, whileD
denotes the daughter strands.
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stant, or fitness, associated with genomehs ,s̄j, pss8 ,hs ,s̄jd
denotes the probability that the parent strands8 forms the
genomehs ,s̄j after daughter strand synthesis and lesion re-
pair, and k̄std;ohs,s̄jkhs,s̄jxhs,s̄j is the mean fitness of the
population.

When lesion repair is imperfect, the correlation between
the two strands is broken, and we must consider a more
generalized dynamics over genomes of the formhs ,s8j,
where boths ands8 are arbitrary. Following the derivation
in [27], we obtain the quasispecies equations,

dxhs,s8j

dt
= − fkhs,s8j + k̄stdgxhs,s8j + o

hs9,s-j

khs9,s-jxhs9,s-j

3 fp„ss9,s-d,hs,s8j… + p„ss-,s9d,hs,s8j…g.

s2d

Here,p(ss9 ,s-d ,hs ,s8j) denotes the probability that parent
strand s9, as part of genomehs9 ,s-j, becomes genome
hs ,s8j after daughter strand synthesis and lesion repair. In
addition, we havek̄std=ohs9,s-jkhs9,s-jxhs9,s-j. The defini-
tions are otherwise unchanged from the original semiconser-
vative equations.

In the semiconservative quasispecies equations, the
complementarity property allows one to convert the qua-
sispecies dynamics over the space of double-stranded ge-
nomes into an equivalent, and considerably simpler, dynam-
ics over the space of single strands[27]. With imperfect
lesion repair, the lack of perfect correlation between the two
strands in the genome makes a conversion to a single strand
model impossible. Nevertheless, we can make an analogous
transformation of the dynamics, from double-stranded ge-
nomeshs ,s8j to orderered pairsof strands,ss ,s8d, as fol-
lows: We defineyss,s8d=yss8,sd=

1
2xhs,s8j if sÞs8, andyss,sd

=xhs,sj. Also, we definekss,s8d=kss8,sd=khs,s8j. We then have
that

o
hs9,s-j

khs9,s-jxhs9,s-jfp„ss9,s-d,hs,s8j…

+ p„ss-,s9d,hs,s8j…g

= 2 o
hs9,s-j,s9Þs-

fkss9,s-dyss9,s-dp„ss9,s-d,hs,s8j…

+ kss-,s9dyss-,s9dp„ss-,s9d,hs,s8j…g

+ 2 o
hs9,s9j

kss9,s9dyss9,s9dp„ss9,s9d,hs,s8j…

= 2 o
ss9,s-d

kss9,s-dyss9,s-dp„ss9,s-d,hs,s8j…. s3d

Finally, we definep(ss9 ,s-d ,ss ,s8d) to be the probabil-
ity that s9, as part of genomehs9 ,s-j, becomess, with
daughter strands8 (after daughter strand synthesis and lesion
repair). Then it follows that

p„ss9,s-d,hs,s8j…

= Hp„ss9,s-d,ss,s8d… + p„ss9,s-d,ss8,sd…, if s Þ s8

p„ss9,s-d,ss,s8d…, if s = s8.
J

s4d

For s8Þs, we therefore obtain that

dyss,s8d

dt
=

1

2

dxhs,s8j

dt

= − fkss,s8d + k̄stdgyss,s8d + o
ss9,s-d

kss9,s-dyss9,s-d

3fp„ss9,s-d,ss,s8d… + p„ss9,s-d,ss8,sd…g.

s5d

The same equation holds for yss,sd, since
2p(ss9 ,s-d ,hs ,sj)=p(ss9 ,s-d ,ss ,sd)+p(ss9 ,s-d ,ss ,sd).
Therefore the quasispecies dynamics over the space of or-
dered sequence-pairs is given by

dyss,s8d

dt
= − fkss,s8d + k̄stdgyss,s8d + o

ss9,s-d

kss9,s-dyss9,s-d

3 fp„ss9,s-d,ss,s8d… + p„ss9,s-d,ss8,sd…g.

s6d

In Appendix A, we show that Eq.(6) reduces to the origi-
nal semiconservative quasispecies equations whenl=1. We
also rederive a result of Brumer and Shakhnovich[30],
which states that whenl=0, then the semiconservative qua-
sispecies equations may be transformed into equations which
are similar in form to the conservative quasispecies equa-
tions.

As a final derivation in this section, we will obtain an
equivalent formulation of Eq.(6) which will prove useful
later. To begin, suppose that the fitness landscape is such that
kss̄,s̄8d=kss,s8d. Furthermore, suppose we have that
p(ss̄9 ,s̄-d ,ss̄ ,s̄8d)=p(ss9 ,s-d ,ss ,s8d). Then, if our popu-
lation is initially lesion-free, we claim thatyss̄,s̄8d=yss,s8d at
all times.

To see this, note first that a lesion-free population is
equivalent to the statement thatyss,s8d=0 if s8Þ s̄. Then if
s8Þ s̄, it certainly follows that s̄8Þs% , hence yss̄,s̄8d=0
=yss,s8d. On the other hand, ifs8=s̄, then yss̄,s̄8d=yss8,sd
=yss,s8d. Therefore a population which is lesion-free satisfies
the property thatyss̄,s̄8d=yss,s8d for all sequence pairsss ,s8d.

Then in order to prove thatyss̄,s̄8d=yss,s8d at all times, we
need only show thatyss̄,s̄8d=yss,s8d at some timet implies
that dyss̄,s̄8d /dt=dyss,s8d /dt. We have,
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dyss̄,s̄8d

dt
= − fkss̄,s̄8d + k̄stdgyss̄,s̄8d + o

ss9,s-d

kss9,s-dyss9,s-d

3 fp„ss9,s-d,ss̄,s̄8d… + p„ss9,s-d,ss̄8,s̄d…g

= − fkss,s8d + k̄stdgyss,s8d + o
ss9,s-d

kss̄9,s̄-dyss̄9,s̄-d

3 fp„ss̄9,s̄-d,ss̄,s̄8d… + p„ss̄9,s̄-d,ss̄8,s̄d…g

= − fkss,s8d + k̄stdgyss,s8d + o
ss9,s-d

kss9,s-dyss9,s-d

3 fp„ss9,s-d,ss,s8d… + p„ss9,s-d,ss8,sd…g

=
dyss,s8d

dt
, s7d

which establishes our claim.
So let us assume that our fitness landscape is such that

kss̄,s̄8d=kss,s8d, and also that p(ss̄9 ,s̄-d ,ss̄ ,s̄8d)
=p(ss9 ,s-d ,ss ,s8d). If our population is initially lesion-
free, then for all sequence pairsss ,s8d we have yss̄,s̄8d
=yss,s8d. This gives

dyss,s8d

dt
= − fkss,s8d + k̄stdgyss,s8d

+ o
ss9,s-d

kss9,s-dyss9,s-dp„ss9,s-d,ss,s8d…

+ o
ss9,s-d

kss̄9,s̄-dyss̄9,s̄-dp„ss̄9,s̄-d,ss8,sd…

= − fkss,s8d + k̄stdgyss,s8d

+ o
ss9,s-d

kss9,s-dyss9,s-dp„ss9,s-d,ss,s8d…

+ o
ss9,s-d

kss9,s-dyss9,s-dp„ss9,s-d,ss̄8,s̄d…, s8d

which can be simplified to give

dyss,s8d

dt
= − fkss,s8d + k̄stdgyss,s8d + o

ss9,s-d

kss9,s-dyss9,s-d

3 fp„ss9,s-d,ss,s8d… + p„ss9,s-d,ss̄8,s̄d…g.

s9d

We will make use of these equations when considering the
behavior of the quasispecies dynamics in the limit of infinite
genome lengths.

B. Determination of p(„s9 ,s-… ,„s ,s8…)

We now computep(ss9 ,s-d ,ss ,s8d), assuming that with
each genomehs ,s8j there is a base-pair independent mis-

match probability, denoted byehs,s8j, and a base-pair inde-
pendent lesion repair probability, denoted bylhs,s8j (the ge-
nome dependence of the mismatch and lesion repair
probabilities arises from the fact that different genomes may
code for different enzymes, or none at all, that are involved
in DNA repair. See, for instance[24–26]).

We begin with some definitions(see Fig. 2): We definesC
to be the subsequence of bases ins which are complemen-
tary with the corresponding bases ins8. That is, supposes
=b1¯bL, and suppose for indicesi1, i2, ¯ , ik we have

that b̄i j
=bL−i j+18 . ThensC=bi1

¯bik
. We also definesC8 to be

the subsequence of corresponding bases ins8, so thatsC8
=bL−ik+18 ¯bL−i1+18 . Finally, let sC9 denote the subsequence of
bases ins9 corresponding to the bases insC, so thatsC9
=bi1

9 ¯bik
9 .

Now, definesNC to be the subsequence of bases ins
which are not complementary with the corresponding bases
in s8. That is, given the complementary indicesi1, i2
, ¯ , ik defined above, leti18, i28, ¯ , iL−k8 be the remain-
ing indices. ThensNC=bi18

¯biL−k8 . We definesNC8 to be the
subsequence of corresponding bases ins8, so that sNC8
=bL−iL−k8 +1

8 ¯bL−i18+1
8 . Finally, we let sNC9 denote the subse-

quence of bases ins9 corresponding to the bases insNC, so
that sNC9 =bi18

9 ¯biL−k8
9 .

We now let p(ss9 ,s-8d ;s-) denote the probability that
s9, as part of genomehs9 ,s-j, is paired withs-8 during
daughter strand synthesis. We also letp(ss9 ,s-8d
→ ss ,s8d ;s-) denote the probability thats9 becomess and
s-8 becomess8 during lesion repair(the presence of thes-
in this notation is to indicate thats9 comes from genome
hs9 ,s-j. Presumably, the enzymes involved in lesion repair
are the ones that came from the original parent cell, hence
the lesion repair probability should belhs9,s-j. Then we have
that

FIG. 2. (Color online) Illustration of the various definitions for
ssNdC, ssNdC9 , andssNdC9 . We use the four basesadeninesAd, guanine
sGd, thymine sTd, and cytosinesGd. The Watson-Crick pairs are
A-T andG-C [35]. The notations 58 and 38 refer to the chemically
distinct ends of the polynucleotide chains[35].
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p„ss9,s-d,ss,s8d… = o
s-8

p„ss9,s-8d;s-…

3p„ss9,s-8d → ss,s8d;s-…. s10d

Consider some basebi9 in s9, and suppose thatbi9 is part of
sC9 . If bi9 differs from the corresponding basebi in sC, then it
is clear that during daughter strand synthesis, it must be

paired withb̄i, and during lesion repair it isbi9 that must be
repaired to formbi. Therefore, iflC;DHssC9 ,sCd denotes the
Hamming distance betweensC8 and sC, then bi9 must be

paired with b̄i, and thesbi8 ,b̄id lesion must be repaired to

sbi ,b̄id, in lC places. The probability of mispairing a givenbi9

with b̄i is ehs9,s-j / sS−1d. The probability of lesion repair is
lhs9,s-j. Finally, assuming lesion repair occurs, the probabil-
ity of repairing bi9 is 1/2. Assuming thats-8 is chosen to
satisfy the pairing requirements described above, we obtain a
factor of flhs9,s-jehs9,s-j /2sS−1dglC contribution to
p(ss9 ,s-8d ;s-)p(ss9 ,s-8d→ ss ,s8d ;s-).

Now, letLC denote the length ofsC, so thatsC9 andsC are
equal in LC− lC positions. Then, given somebi9 in one of
theseLC− lC positions, it can be paired with any other base.
Let lC,1 denote the number, among these positions, wherebi9

is mispaired with a base other thanb̄i9= b̄i. Then, among these

LC− lC positions,bi9 is paired with b̄i9 in LC− lC− lC,1 posi-
tions. Since lesion repair must happen inlC,1 positions, then

for an appropriately chosens-8, we have a factor of
flhs9,s-jehs9,s-j /2sS−1dglC,1s1−ehs9,s-jdLC−lC−lC,1 contribution
to p(ss9 ,s-8d ;s-)p(ss9 ,s-8d→ ss ,s8d ;s-).

Finally, let LNC denote the length ofsNC. SincesNC and
sNC8 are not complementary, no lesion repair can happen at
positions insNC9 . Therefore,sNC9 cannot be changed, hence
we must havesNC9 =sNC. Also, a mismatch must occur at all
sites alongsNC9 to form the corresponding bases insNC8 .
Once again, for an appropriately chosens-8, we have a fac-
tor of dsNC9 sNC

fs1−lhs9,s-jdehs9,s-j / sS−1dgLNC contribution to
p(ss9 ,s-8d ;s-)p(ss9 ,s-8d→ ss ,s8d ;s-). Therefore, given
a daughter strands-8 for which ss9 ,s-8d can become
ss ,s8d after lesion repair, we have

p„ss9,s-8d;s-dp„ss9,s-8d

→ ss,s8d;s-…

= dsNC9 sNC
Slehs9,s-j

2sS− 1d
D lCS s1 − ldehs9,s-j

S− 1
DLNC

3Slehs9,s-j

2sS− 1d
D lC,1

s1 − ehs9,s-jdLC−lC−lC,1. s11d

To evaluate the sum in Eq.(10), we need only sum over
those s-8 for which p(ss9 ,s-8d ;s-)p(ss9 ,s-8d
→ ss ,s8d ;s-) is nonzero. Thus, we sum over all possible
values of lC,1, taking into account degeneracies for each
value of lC,1. This gives

p„ss9,s-d,ss,s8d… = o
s-8

p„ss9,s-8d;s-…p„ss9,s-8d → ss,s8d;s-…

= dsNC9 sNC
Slhs9,s-jehs9,s-j

2sS− 1d
D lCS s1 − lhs9,s-jdehs9,s-j

S− 1
DLNC

3 o
lC,1=0

LC−lC SLC − lC
lC,1

DsS− 1dlC,1Slhs9,s-jehs9,s-j

2sS− 1d
D lC,1

s1 − ehs9,s-jdLC−lC−lC,1

= dsNC9 sNC
Slhs9,s-jehs9,s-j

2sS− 1d
D lCS s1 − lhs9,s-jdehs9,s-j

S− 1
DLNCF1 − ehs9,s-jS1 −

lhs9,s-j

2
DGLC−lC

. s12d

Note thatLC=L−LNC, and note that sinceLNC is simply the
number of positions wheres ands8 are not complementary,
it follows that LNC=DHss ,s̄8d. Therefore, our final formula
is,

p„ss9,s-d,ss,s8d…

= dsNC9 sNC
Slhs9,s-jehs9,s-j

2sS− 1d
DDHssC9 ,sCd

3S s1 − lhs9,s-jdehs9,s-j

S− 1
DDHss,s̄8d

3F1 − ehs9,s-jS1 −
lhs9,s-j

2
DGL−DHss,s̄8d−DHssC9 ,sCd

.

s13d

For the remainder of this paper we will assume thatehs,s8j
and lhs,s8j are genome independent, and hence may be de-
noted bye andl (unless otherwise indicated).

III. THE “MASTER” GENOME FITNESS LANDSCAPE

We will now develop the infinite sequence length equa-
tions for a class of fitness landscapes defined by what we call
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a “master” genomehs0,s̄0j. A subclass of these landscapes
is a generalization of the single-fitness-peak landscape
[3,27], which is the simplest landscape for which analytical
results are obtainable. We will solve for the equilibrium
mean fitness and the error threshold associated with this class
of landscapes in the next section.

Before proceeding, we note that the infinite sequence
length equations are taken withm;Le held constant. Be-
cause the probability of correct daughter strand synthesis is
s1−edL→e−m asL→`, holdingm constant amounts to fixing
the genome replication fidelity in the limit of infinite se-
quence length.

The “master” genomehs0,s̄0j gives rise to the ordered
sequence pairsss0,s̄0d and ss̄0,s0d. In the limit of infinite
sequence length, it is possible to show that, with probability
1, the sequencess0 ands̄0 become infinitely separated from
each other, i.e.,DHss0,s̄0d→` [27]. Thus we may regard
ss0,s̄0d and ss̄0,s0d as infinitely separated from each other
in the ordered sequence pair space.

The infinite separation betweens0 and s̄0 allows a divi-
sion of the sequence pairs into three classes. A sequence pair
ss ,s8d is said to be of thefirst class if DHss ,s0d and
DHss8 ,s̄0d are both finite. A sequence pairss ,s8d is said to
be of thesecond classif DHss ,s̄0d andDHss8 ,s0d are both
finite. Finally, a sequence pair not belonging to either one of
the first two classes is said to belong to thethird class. Using
the Triangle Inequality, it is readily shown that a sequence
pair cannot belong to more than one class.

A given sequence pairss ,s8d of the first class can be
characterized by four parameters, denotedlC, lL, lR, and lB.
The first parameter,lC, denotes the number of positions
wheres ands8 are complementary, yet differ from the cor-
responding positions ins0 and s̄0, respectively. The second
parameter,lL, denotes the number of positions wheres dif-
fers from s0, but the complementary positions ins8 are
equal to the corresponding ones ins̄0. The third parameter,
lR, denotes the number of positions wheres is equal to the
ones in s0, but the complementary positions ins8 differ
from the corresponding ones ins̄0. Finally, the fourth param-
eter,lB, denotes the number of positions wheres ands8 are
not complementary and also differ from the corresponding
positions ins0 and s̄0, respectively. These definitions are
illustrated in Fig. 3. A sequence pairss ,s8d of the second
class may be similarly characterized(excepts0 and s̄0 are
swapped in the definitions given above).

We assume that the fitness of a given sequence pair of the
first class is determined bylC, lL, lR, and lB, hence we may
write that kss,s8d=kslC,lL,lR,lBd. The fitness of a sequence pair
ss ,s8d of the second class is determined by noting that
ss8 ,sd is of the first class, and thatkss,s8d=kss8,sd. We take
the third class sequence pairs to be unviable, with a first-
order growth rate of 1.

We also assume thatkslC,lL,lR,lBd=kslC,lR,lL,lBd. This is a natu-
ral assumption to make if one assumes symmetry between
the two master strandss0 and s̄0. This assumption also im-
plies thatkss̄,s̄8d=kss,s8d. To see this, let us first suppose that
ss ,s8d is of the first class, and is characterized by the pa-
rameterslC, lL, lR, and lB. Then ss̄8 ,s̄d is also of the first

class. Because taking the complement of a sequence essen-
tially amounts to a relabeling of the bases defined by a one-
to-one map, and to a reversal in the sequence direction, it
follows that ss̄ ,s̄8d is a sequence pair of the second class,
characterized by the parameterslC, lL, lR, and lB. Therefore
ss̄8 ,s̄d is characterized by the parameterslC, lR, lL, and lB,
and sokss̄,s̄8d=kss̄8,s̄d=kslC,lR,lL,lBd=kslC,lL,lR,lBd=kss,s8d.

If ss ,s8d is of the second class, thenss8 ,sd is of the first
class. We then havekss̄,s̄8d=kss̄8,s̄d=kss8,sd=kss,s8d.

Finally, if ss ,s8d is of the third class, then using the iden-
tity DHss̄1,s̄2d=DHss1,s2d we can show thatss̄ ,s̄8d is also
of the third class. Thereforekss̄,s̄8d=1=kss,s8d.

Based on our formula forp(ss9 ,s-d ,ss ,s8d), we have
that p(ss̄9 ,s̄9d ,ss̄ ,s̄8d)=p(ss9 ,s-d ,ss ,s8d). This result
again follows from the fact that taking the complement of a
sequence essentially amounts to a relabeling of the bases,
and a change in the direction that the sequence is read. Thus
all Hamming distances in Eq.(13) are unchanged.

Therefore, with this choice of landscape, and with a
genome-independente and l, we have, assuming that our
quasispecies population is initially lesion-free(which is done
by taking yss0,s̄0d=yss̄0,s0d=1/2, for instance) that yss̄,s̄8d
=yss,s8d, and so Eq.(9) applies.

We allow our system to come to equilibrium from the
initial condition yss0,s̄0d=yss̄0,s0d=1/2 (equivalent toxhs0,s̄0j
=1. We choose this initial condition because it guarantees
convergence to the unique stable equilibrium solution of the
model. The reason for this is that all genomes are mutation-
ally accessible fromhs0,s̄0j. Because of the neglect of back-
mutations in the limit of infinite sequence length, other initial
conditions may lead to different regions of the genome space
becoming mutationally disconnected from each other, pre-
venting proper equilibration from occurring).

We claim that ifss ,s8d is of the first class, then in Eq.(9)
we need only consider contributions fromss9 ,s-d which are
also of the first class. The reason for this is thats is a finite
Hamming distance away froms0. Therefores9 must also be
a finite Hamming distance away froms, since the probabil-
ity of making an infinite number of replication mistakes is
zero. For the same reason,s- must be a finite Hamming
distance away froms̄0 for yss9,s-d to be nonzero. Thus
ss9 ,s-d must be of the first class to make a mutational con-
tribution to ss ,s8d, as claimed.

FIG. 3. (Color online) Diagram illustrating the definitionslC, lL,
lR, and lB.
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In Appendix B, we show that, for sequence pairsss ,s8d
of the first class,yss,s8d depends only onlC, lL, lR, andlB (we
note that this certainly holds att=0, given our initial condi-
tions). We sum over the population fractions of all first class
sequence pairs characterized by a given set oflC, lL, lR, and
lB, and reexpress the quasispecies dynamics in terms of these
quantities. DefiningzslC,lL,lR,lBd to be the total population frac-
tion of first class sequence pairs characterized bylC, lL, lR,
and lB, we obtain, from Appendix B, that

dzslC,0,0,0d

dt
= − fkslC,0,0,0d + k̄stdgzslC,0,0,0d

+ 2e−ms1−l/2d o
lC8=0

lC 1

lC8 !
Slm

2
DlC8

o
l19=0

lC−lC8

o
l29=0

`

3 ksl19,lC−lC8−l19,l29,0dzsl19,lC−lC8−l19,l29,0d,

dzslC,lL.0,0,0d

dt
= − fkslC,lL,0,0d + k̄stdgzslC,lL,0,0d

+
1

lL!
fms1 − ldglLe−ms1−l/2d o

lC8=0

lC 1

lC8 !
Slm

2
DlC8

3 o
l19=0

lC−lC8

o
l29=0

`

ksl19,lC−lC8−l19,l29,0dzsl19,lC−lC8−l19,l29,0d,

dzslC,0,lR.0,0d

dt
= − fkslC,0,lR,0d + k̄stdgzslC,0,lR,0d

+
1

lR!
fms1 − ldglRe−ms1−l/2d o

lC8=0

lC 1

lC8 !
Slm

2
DlC8

3 o
l19=0

lC−lC8

o
l29=0

`

ksl19,lC−lC8−l19,l29,0dzsl19,lC−lC8−l19,l29,0d,

s14d

The reason why genomes where bothlL and lR are nonzero,
or wherelB is nonzero, cannot be produced by replication, is
as follows: Given a parent strands which differs froms0 in
l places, the probability of correct daughter strand synthesis
in thesel places iss1−edl =s1−m /Ldl →1 asL→`. There-
fore any mismatches that occur will occur wheres and s0
are identical. Wherever lesion repair does not occur,s re-
mains identical tos0 in the final genome. The result is a
sequence pair for whichlL= lB=0. Similarly, a parent strand
s which differs froms̄0 in a finite number of positions pro-
duces a sequence pair for whichlR= lB=0. Therefore, as is
reflected in the equations, it is impossible for replication to
produce sequence pairs for whichlL and lR are simulta-
neously nonzero, or for whichlB is nonzero. Since the popu-
lation fractions of these genomes is initially 0, they remain 0
for all time, hence we may simply assume thatzslC,lL,lR,lBd
=0 if lL and lR are simultaneously nonzero, or iflB is non-
zero.

These equations describe the quasispecies dynamics for
the first-class sequence pairs. An analogous set of equations
may be derived for the second-class sequence pairs, where
we let z̄slC,lL,lR,lBd denote the total population fraction of
second-class sequence pairs characterized by the parameters
lC, lL, lR, and lB. Note that a sequence pairss ,s8d is of the
second class if and only ifss8 ,sd is of the first class. There-
fore, since yss,s8d=yss8,sd, it follows that z̄slC,lL,lR,lBd
=zslC,lR,lL,lBd.

We can provide an expression for the mean fitness in
terms of thezslC,lL,lR,lBd. First note that, since the total popu-
lation fraction of the third class sequence pairs is
1−olC=0

` olL=0
` olR=0

` olB=0
` szslC,lL,lR,lBd+ z̄slC,lL,lR,lBdd, it follows

that the mean fitness is given by

k̄std = o
lC=0

`

o
lL=0

`

o
lR=0

`

o
lB=0

`

3 skslC,lL,lR,lBdzslC,lL,lR,lBd

+ kslC,lR,lL,lBdz̄slC,lL,lR,lBdd + 1 − o
lC=0

`

o
lL=0

`

o
lR=0

`

o
lB=0

`

3 szslC,lL,lR,lBd + z̄slC,lL,lR,lBdd. s15d

For our particular class of fitness landscapes, for which
we have yss̄,s̄8d=yss,s8d, we get yslC,lR,lL,lBd=yss̄8,s̄d=yss,s8d
=yslC,lL,lR,lBd, and sozslC,lR,lL,lBd=zslC,lL,lR,lBd. This allows us to
reexpress the expression for the mean fitness as

k̄std = 2o
lC=0

`

o
lL=0

`

o
lR=0

`

o
lB=0

`

skslC,lL,lR,lBd − 1dzslC,lL,lR,lBd + 1.

s16d

IV. SOLUTION OF THE GENERALIZED SINGLE-
FITNESS-PEAK LANDSCAPE

The simplest and most commonly studied landscape in the
quasispecies model is known as the single-fitness-peak land-
scape. For the single-stranded RNA genomes modeled in the
original quasispecies equations, this landscape is defined by
a “master” genomes0 with a first-order growth rate constant
k.1, while all other genomes have a first-order growth rate
constant of 1. Thus the master genome is said to be viable,
while all the other genomes are unviable.

For semiconservatively replicating, double-stranded DNA
genomes, the single-fitness-peak landscape is defined by a
“master” genomehs0,s̄0j. When converting the quasispecies
dynamics from the space of genomes to the space of single
strands, the resulting single-fitness-peak landscape becomes
a two-peak landscape with “master” sequencess0 and s̄0.

For imperfect lesion repair, it is therefore also natural for
us to first study the single-fitness-peak landscape. In this sec-
tion, instead of considering a single-fitness-peak landscape
where any change to the “master” genomehs0,s̄0j results in
an unviable genome, we consider a “generalized” single-
fitness-peak landscape, where the master genome can sustain
a finite number of lesions and remain viable.

In the limit of infinite sequence length, thel-lesion land-
scape may therefore be defined as follows: For sequence
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pairs of the first class, we definekslC,lL,lR,lBd=k.1 if lC=0
and lL+ lR+ lBø l, otherwisekslC,lL,lR,lBd=1. The landscape of
sequence pairs of the second class is of course defined by the
landscape for sequence pairs of the first class, viakss,s8d
=kss8,sd. All sequence pairs of the third class are unviable.

Because we may make the assumption thatzslC,lL,lR,lBd=0 if
lBÞ0 or if both lL andlR are nonzero, we need only consider
zslC,lL,0,0d andzslC,0,lR,0d. Furthermore, by the symmetry of our
landscape we havezslC,l8,0,0d=zslC,0,l8,0d.

We define the following quantities for use in our calcula-
tions:

z0 = zs0,0,0,0d + o
lL=1

l

zs0,lL,0,0d + o
lR=1

l

zs0,0,lR,0d

= zs0,0,0,0d + 2o
l8=1

l

zs0,0,l8,0d, s17d

z1 = o
l8=0

l

zs0,0,l8,0d, s18d

z2 = o
l8=0

`

zs0,0,l8,0d. s19d

We then have, from Eq.(14), that

dzs0,0,0,0d

dt
= − fk + k̄stdgzs0,0,0,0d + 2e−ms1−l/2dfsk − 1dz1 + z2g,

dz1

dt
= − fk + k̄stdgz1 + e−ms1−l/2df1 + f lsm,ldgfsk − 1dz1 + z2g,

dz2

dt
= − k̄stdz2 + se−msl/2d + e−ms1−l/2d − 1dfsk − 1dz1 + z2g,

s20d

where f lsm ,ld;ol8=0
l 1/l8 ! fms1−ldgl8.

Now, note thatz0=zs0,0,0,0d+2sz1−zs0,0,0,0dd. Furthermore,
note from Eq.(16) that k̄std=ks2z0d+s1−2z0d=2sk−1dz0+1.
Setting the left-hand side of Eq.(20) to 0, we may system-
atically eliminate variables to obtain

0 = −
z1

k̄st = `d − se−msl/2d + e−ms1−l/2d − 1d

3fk̄st = `d2 − Asm,ldk̄st = `d − Bsm,ldg, s21d

where

Asm,ld = k„fs1 + f lsm,ldge−ms1−l/2d − 1d − f lsm,lde−ms1−l/2d

+ e−msl/2d − 1…,

Bsm,ld = kse−msl/2d + e−ms1−l/2d − 1d. s22d

Equation (21) admits multiple solutions. To determine the
physical solution at a givenm, we note that we wantk̄st

=`d=k for m=0. This simply reflects the fact that when rep-
lication is error-free, the population consists entirely of vi-
able genomes. Therefore, for sufficiently smallm, the equi-
librium mean fitness is given by

k̄st = `d =
Asm,ld + ÎAsm,ld2 + 4Bsm,ld

2
. s23d

The equilibrium mean fitness is given by this expression
until the error catastrophe, which occurs when the value of
k̄st=`d given by the formula above equals 1. At this point,
the selective advantage for remaining viable is no longer
sufficiently strong to localize the population about the viable
genomes. The fraction of viable genomes drops to 0, and the
fitness of the population simply becomes the fitness of the
unviable genomes.

Settingk̄st=`d=1 in Eq.(23), it is possible to show, after
some manipulation, that the critical value ofm, denotedmcrit,
is the solution to the equation,

e−ms1−l/2d

2 − e−msl/2d =
k + 1

kf2 + f lsm,ldg − f lsm,ld
. s24d

V. RESULTS AND DISCUSSION

A. Behavior of the model for specific values ofl and l

1. l=0

When l =0, our fitness landscape corresponds to a single
fitness peak landscape which tolerates no lesions. We have
f0sm ,ld=1, so, ask→`, we have, at the error catastrophe,
that

e−ms1−l/2d

2 − e−msl/2d =
1

3
. s25d

Whenl=0, we obtaine−mcrit =1/3, while whenl=1, we ob-
tain e−mcrit/2=1/2. Note that, after daughter strand synthesis
and lesion repair, the probability that a given parent base is
matched up with the proper daughter base is given by 1−e
+sl /2de. The reason for this is that correct base pair synthe-
sis occurs with probability 1−e. A mismatch occurs with
probabilitye, which is correctly repaired during lesion repair
with probabilityl /2. In the limit of infinite sequence length,
the probability of correct daughter strand synthesis then be-
comes limL→`f1−es1−l /2dgL=e−ms1−l/2d.

Note then that forl=0, the critical daughter strand syn-
thesis probability is lower than forl=1. The reason for this
is that when lesion repair is turned off, the parent strands are
unaffected by the replication process, and hence the informa-
tion in the master genome is preserved by replication. Thus,
although viability may be lost through erroneous replication,
preserving the information in the parent strand makes it pos-
sible to recover a viable genome in the next replication cycle.
The result is a delay in the critical replication fidelity to a
lower value ofe−mcrit than would be expected if it were as-
sumed that unviable genomes cannot replicate into viable
ones(the expected value from such an assumption is 1/2).
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2. l=`

For l =`, our fitness landscape is one where only one of
the “master” strands is necessary to confer viability. In this
case, we have f`sm ,ld=ems1−ld, which gives Asm ,ld
=Bsm ,ld−1. Below the error catastrophe, we therefore have

k̄st = `d = Bsm,ld = kse−msl/2d + e−ms1−l/2d − 1d. s26d

Note that forl=0 we obtaink̄st=`d=ke−m. Thus, when le-
sion repair is turned off, we obtain an effectively conserva-
tively replicating system. The error catastrophe in this case
can be delayed to arbitrarily high mutation rates by increas-
ing the replication rate of the viable genomes. This result
was first derived by Brumer and Shakhnovich[30] and led to
the hypothesis that imperfect lesion repair could reconcile
semiconservative replication with the high mutation rates ob-
served in many cancers(specifically the microsatellite insta-
bility, or MIN, tumors).

B. Similarities to both conservative and semiconservative
replication

Semiconservative replication with imperfect lesion repair
bears a number of similarities and differences with semicon-
servative replication with perfect lesion repair and to conser-
vative replication. We have shown earlier that the original
semiconservative equations are obtained whenl=1. Further-
more, we have also shown that when lesion repair is turned
off, then if the fitness depends on only one of the strands, a
semiconservatively replicating population becomes an effec-
tively conservatively replicating one. For arbitrary lesion re-
pair probabilities and for a given maximum lesion valuel, it
is interesting to explore what features from both semiconser-
vative and conservative replication are retained.

There are two key differences between conservative and
semiconservative replication which we will explore here.
First of all, for the single fitness peak landscape, the equilib-
rium mean fitness of a conservatively replicating system be-
low the error catastrophe iske−m, which givesmcrit =ln k. For
a semiconservatively replicating system, we have an equilib-
rium mean fitness ofks2e−m/2−1d, which gives mcrit

=2 ln 2/s1+1/kd. Note that, ask→`, mcrit→` for a conser-
vative system, while for a semiconservative system,mcrit
→2 ln 2. Thus, for a conservatively replicating system, the
error threshold can be pushed to arbitrarily high mutation
rates by making the growth rate of the master genome arbi-
trarily large. For semiconservative replication, in contrast,
there is a maximal value to the error threshold. If the muta-
tion rate exceeds this value, then no quasispecies will exist,
independent of the growth rate constant of the viable ge-
nomes.

The reason for this difference in behavior is that conser-
vative replication preserves a copy of the original genome.
Therefore, no matter how high the mutation rate, by replicat-
ing fast enough, it is possible to produce viable genomes at a
sufficient rate to out-replicate the unviable genomes, and
thereby localize the population to a well-defined quasispe-
cies. With semiconservative replication, the original genome
is destroyed by the replication process. Therefore, on aver-
age, it is necessary for a viable genome to produce at least

one viable copy per replication cycle. Otherwise, the net
growth rate of the viable genomes becomes negative, and
replicating faster simply kills off the viable population more
quickly.

For arbitrary lesion repair probabilities, we can determine
the value ofmcrit in the limit of k→` by solving

e−ms1−l/2d

2 − e−msl/2d =
1

2 + f lsm,ld
, s27d

which may be rearranged to give

f2 + f lsm,ldge−ms1−l/2d + e−msl/2d − 2 = 0. s28d

Whenm=0, f lsm ,ld=1, so the left-hand side evaluates to 2.
When m=`, the left-hand side evaluates to
limm→`ff lsm ,lde−ms1−l/2d+e−msl/2d−2g. For finite l, f lsm ,ld is
a polynomial, hence we obtain a limit of −2 forl.0, and a
limit of −1 for l=0. Therefore, by the Intermediate Value
Theorem, Eq.(28) has a solution, and so even ask→`, mcrit
remains finite. This means that, for all finitel, semiconser-
vative replication with arbitrary lesion repair is similar to the
original semiconservative model in that there is an upper
limit to the mutation rate before the error catastrophe occurs,
independent of the growth rate of the viable genomes.

If l =`, then f lsm ,ld=ems1−ld, which gives
limm→`2se−msl/2d−1d. Whenl.0, this limit is −2, so again
mcrit remains finite. Whenl=0, note that Eq.(28) evaluates
to 2e−m=0, which has no solution for finitem.

Therefore, unlessl=0 and l =`, semiconservative repli-
cation with arbitrary lesion repair also has an upper bound to
the mutation rate before the error catastrophe occurs. This
makes sense, because, to ensure that after replication at least
one of the daughter genomes is viable, it is necessary to
prevent lesion repair from creating an unviable genome, and
it is necessary to prevent lesions from destroying viability.

The second feature of semiconservative and conservative
replication which we will consider has to do with the behav-
ior of k̄st=`d near the error catastrophe. Definekequilsmd
= k̄st=`d, and let us consider the behavior ofkequil8 smd for
m→mcrit

− .
For conservative replication, kequil8 smd=−ke−m, so

limm→mcrit
− kequil8 smd=−1. For semiconservative replication,

kequil8 smd=−ke−m/2, so limm→mcrit
− kequil8 smd=−sk+1d /2. As k

→`, this derivative goes to −̀. In Appendix C, we will
show that unlessl=1, kequil8 smd remains finite asm→mcrit

− ,
assumingl is finite.

In this sense, then, imperfect lesion repair is similar to
conservative replication. The reason for this behavior is that,
when lesion repair is imperfect, the correlation between the
parent and daughter strands is broken. Therefore it is pos-
sible that an erroneous daughter strand is synthesized, but
that the errors are not communicated to the parent strand. On
a subsequent replication cycle, the undamaged parent strand
may be reintegrated into a master genome. Near the error
catastrophe, where the effective growth rate of the viable
genomes is close to that of the unviable genomes, this effect
slows down the rate at which the fitness decreases, leading to
a finite value forkequil8 smcritd.

IMPERFECT DNA LESION REPAIR IN THE… PHYSICAL REVIEW E 70, 061915(2004)

061915-9



Interestingly, forl =`, the derivative at the error catastro-
phe becomes infinite ask→` for l.0.

C. Stochastic simulations

In order to compare the results of our theory with actual
numerics, we ran stochastic simulations of finite populations
of replicating organisms. Specifically, we determinedk̄st
=`d at various values ofm for l =0 (Fig. 4), l =1 (Fig. 5), and
l =` (Fig. 6). We considered genomes of length 40, and
populations of 1000 organisms. Our results were obtained by
averaging over ten independent runs, where each run con-
sisted of 10 000 time steps of size 0.01. We tookk=10 (see
Appendix D for details).

Note the excellent agreement between theory and simula-
tion. One interesting feature to note is that forl =1, the l
=1 fitness is slightly larger than thel=0 fitness for almost
all m below the error catastrophe. However, thel=1 error
catastrophe happens before thel=0 error catastrophe, con-
sequently, there is a region where thel=0 fitness becomes
greater. We give a possible explanation for this phenomenon:
Below the error catastrophe, it is advantageous to maintain
the highest replication fidelity possible, which is done by
maximizing the lesion repair efficiency. A tolerance of one
lesion is not sufficient to provide a selective advantage for
inefficient lesion repair. However, when thel=1 error catas-

trophe is reached, atmcrit <2 ln 2, then lesion repair no
longer reduces the error rate by a sufficient amount to avoid
the death of the population. At this point, it becomes advan-
tageous to turn lesion repair off. With lesion repair turned
off, any replication mistakes that are made remain in the
daugher strand. Thus the parent strand is preserved, and
since the master genome can tolerate some lesions, it is still
possible to produce a viable genome. On a subsequent repli-
cation cycle, the unchanged parent strands can be reinte-
grated into a master genome.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper developed the infinite sequence length, Ham-
ming class based quasispecies equations suitable for describ-
ing semiconservative replication with imperfect lesion repair.
The work presented here may be regarded as a continuation
of both the work in[27] (which provided the quasispecies
equations for semiconservative replication, under the as-
sumption of perfect lesion repair) and[30] (which first intro-
duced the imperfect lesion repair equations and derived the
initial analytical results for the model).

We solved the model for a generalized “single-fitness-
peak” landscape where the master genome can sustain a fi-
nite number of lesions and remain viable. For future re-
search, it will be interesting to consider the behavior of the
model for more realistic landscapes. Specifically, we would
like to explore the behavior of the model when a genome is
viable even for positive values oflC. In the original semicon-
servative quasispecies equations, a fitness landscape which
allows for a finite number of point mutations before loss of
viability does not delay the occurrence of the error catastro-
phe beyond what is predicted in the single-fitness-peak
model [22]. We expect this result to change when lesion
repair is imperfect.
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FIG. 4. Comparison of theory and simulation results forl =0.

FIG. 5. Comparison of theory and simulation results forl =1.

FIG. 6. Comparison of theory and simulation results for
l =`.

TANNENBAUM, SHERLEY, AND SHAKHNOVICH PHYSICAL REVIEW E70, 061915(2004)

061915-10



APPENDIX A: TWO SUBCASES OF THE ARBITRARY
LESION REPAIR EQUATIONS

1. The l=1 semiconservative equations

When l=1, it follows that p(ss9 ,s-d ,ss ,s8d)
=ds̄s8p(ss9 ,s-d ,ss ,s̄d), since, with perfect lesion repair, all
postreplication lesions are removed. Therefore, ifs8Þ s̄,
then

dyss,s8d

dt
= − fkss,s8d + k̄stdgyss,s8d. sA1d

This implies that genomes with lesions will eventually dis-
appear from the population. Furthermore, if an initial popu-
lation of genomes is lesion-free, then no lesions will appear
in the population, hence in such a case we may takeyss,s8d
=0 for s8Þ s̄, and restrict our dynamics to the space of
complementary ordered sequence-pairs, denotedhss ,s̄dj. We
then have

dyss,s̄d

dt
= − fkss,s̄d + k̄stdgyss,s̄d + o

s8

kss8,s̄8dyss8,s̄8d

3 fp„ss8,s̄8d,ss,s̄d… + p„ss8,s̄8d,ss̄,sd…g.

sA2d

Now, for l=1 note that

p„ss8,s̄8d,ss,s̄d… = S ess8,s̄8d

2sS− 1d
DDHss8,sd

3S1 −
ess8,s̄8d

2
DL−DHss8,sd

. sA3d

Note then that sinceDHss̄8 ,s̄d=DHss8 ,sd, we have that
p(ss̄8 ,s8d ,ss̄ ,sd)=p(ss8 ,s̄8d ,ss ,s̄d), and so

dyss,s̄d

dt
= − fkss,s̄d + k̄stdgyss,s̄d

+ o
s8

kss8,s̄8dyss8,s̄8dp„ss8,s̄8d,ss,s̄d…

+ o
s8

kss̄8,s8dyss̄8,s8dp„ss̄8,s8d,ss̄,sd…

= − fkss,s̄d + k̄stdgyss,s̄d

+ 2o
s8

kss8,s̄8dyss8,s̄8dp„ss8,s̄8d,ss,s̄d…. sA4d

Defining ys=yss,hs̄jd, es=ess,s̄d, andks=kss,s̄d gives

dys

dt
= − fks + k̄stdgys + 2o

s8

ks8ys8S es8

2sS− 1d
DDHss8,sd

3S1 −
es8

2
DL−DHss8,sd

, sA5d

which are exactly the original semiconservative equations
derived in[27].

2. The l=0 equations

When lesion repair is turned off, Brumer and Shakhnov-
ich showed that the semiconservative quasispecies equations
can be transformed into equations which are similar in form
to the conservative quasispecies equations[30]. We rederive
this result using our sequence-pair formalism.

For this derivation, we make the assumption thatehs,s8j is
a constant e for all genomes. This implies that
p(ss9 ,s-8d ;s-) does not depend ons-, hence the term may
be dropped from the notation. Since lesion repair is turned
off, we havep(ss9 ,s-d ,ss ,s8d)=ds9spss ,s8d. This gives,

dyss,s8d

dt
= − fkss,s8d + k̄stdgyss,s8d + o

s9

kss,s9dyss,s9dpss,s8d

+ o
s9

kss8,s9dyss8,s9dpss8,sd. sA6d

Now, define ys=os8yss,s8d. Also, define ks

=os8kss,s8dyss,s8d /ys. We then have

dys

dt
= − fks + k̄stdgys + ksys + o

s8

ks8ys8pss8,sd

= o
s8

ks8ys8pss8,sd − k̄stdys, sA7d

where we have used the fact thatos8pss ,s8d=1.
Note that we have transformed the semiconservative qua-

sispecies equations into a set of equations that look like the
conservative equations, the key difference being that the fit-
nessesks are concentration-dependent. However, it is pos-
sible to show that when the fitness depends on only one of
the strands, then the conservative equations are obtained ex-
actly [30].

APPENDIX B: DERIVATION OF THE INFINITE
SEQUENCE LENGTH EQUATIONS

In this appendix, we will derive the infinite sequence
length form of the imperfect lesion repair equations. We be-
gin by first showing that, for sequence pairsss ,s8d of the
first class,yss,s8d depends only onlC, lL, lR, and lB. We note
that this certainly holds att=0, given our initial conditions.
In order to prove that this holds at all times, we need to show
that, if yss,s8d depends only onlC, lL, lR, andlB at some time
t, thendyss,s8d /dt depends only onlC, lL, lR, and lB.

We should note that our “proof” will not be strictly rigor-
ous, since it will consider finite sequence length equations
while still assuming that the first class and second class se-
quence pair dynamics may be treated as separate quasispe-
cies. Nevertheless, since we are passing to the limitL→`,
we can assume thatL is sufficiently large to make the cor-
rection terms to our equations negligible, and eventually 0, in
the limit.

In the procees of deriving the infinite sequence length
equations, we will introduce a number of additional defini-
tions, which are illustrated in Fig. 7.

So, suppose that at some timet, for all sequence pairs
ss ,s8d we have thatyss,s8d depends only onlC, lL, lR, andlB.
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Then we may writeyss,s8d=yslC,lL,lR,lBd, and so, Eq.(9) gives

dyslC,lL,lR,lBd

dt
= − fkslC,lL,lR,lBd + k̄stdgyslC,lL,lR,lBd

+ o
ss9,s-d

kss9,s-dyss9,s-d 3 p„ss9,s-d,ss,s8d…

+ o
ss9,s-d

kss9,s-dyss9,s-d 3 p„ss9,s-d,ss̄8,s̄d….

sB1d

We proceed as follows: GivensC9 andsC, then among the
subset of positions wheresC and s0 are identical, letlC,1

denote wheresC9 differs from sC. Among the subset of po-
sitions wheresC and s0 differ, let lC,2 denote wheresC9 is
identical to s0. Finally, wheresC differs from s0, let lC,3

denote the number of positions wheresC9 differs from both
s0 and sC. It is clear thatDHssC9 ,sCd= lC,1+ lC,2+ lC,3. Fur-
thermore, to have a nonzero value ofp(ss9 ,s-d ,ss ,s8d), we
must havesNC9 =sNC. Since the sequence pairss ,s8d con-
sists of lL+ lR+ lB lesions, it follows thatLNC= lL+ lR+ lB,
giving

p„ss9,s-d,ss,s8d… = S le

2sS− 1dD
lC,1+lC,2+lC,3

3F1 − eS1 −
l

2
DGL−lL−lR−lB−lC,1−lC,2−lC,3

3 S es1 − ld
S− 1

DlL+lR+lB
. sB2d

We now need to characterize thes-: Where s9 differs
from s0, let l19 denote the number of sites wheres9 ands-
are complementary, andl29 the number of sites wheres- is
noncomplementary tos9 but differs from s̄0. Let l39 denote
the number of sites wheres9 is identical tos0, wheres- is
noncomplementary tos9. Then we havelC9 = l19, lL9= lC,1+ lC
+ lL+ lB− lC,2− l19− l29, lR9 = l39, and lB9 = l29.

We defineC9slC,1, lC,2, lC,3; lC, lL , lR, lBd to be the number
of s9 characterized bylC,1, lC,2, and lC,3. We have

C9slC,1,lC,2,lC,3; lC,lL,lR,lBd

= SL − lL − lR − lB − lC
lC,1

DS lC
lC,2

D
3SlC − lC,2

lC,3
DsS− 1dlC,1sS− 2dlC,3, sB3d

wherelC,1 ranges from 0 toL− lL− lR− lB− lC, lC,2 ranges from
0 to lC, and lC,3 ranges from 0 tolC− lC,2.

For each such choice of s9, we define
C-sl19 , l29 , l39 ; lC, lL , lR, lB, lC,1, lC,2, lC,3d to be the number ofs-
characterized byl19, l29, and l39. We have

C-sl19,l29,l39; lC,lL,lR,lB,lC,1,lC,2,lC,3d

= SlC,1 + lL + lB + lC − lC,2

l19
DSlC,1 + lL + lB + lC − lC,2 − l19

l29
D

3 SL − lC,1 − lL − lB − lC + lC,2

l39
DsS− 2dl29sS− 1dl39. sB4d

We may perform a similar analysis onss̄8 ,s̄d, which is
characterized by the parameterslC, lR, lL, and lB. The qua-
sispecies equations then become

dyslC,lL,lR,lBd

dt
= − fkslC,lL,lR,lBd + k̄stdgyslC,lL,lR,lBd + o

lC,1=0

L−lL−lR−lB−lC

o
lC,2=0

lC

o
lC,3=0

lC−lC,2

o
l19=0

lC,1+lL+lB+lC−lC,2

o
l29=0

lC,1+lL+lB+lC−lC,2−l19

o
l39=0

L−lC,1−lL−lB−lC+lC,2

3 C9slC,1,lC,2,lC,3; lC,lL,lR,lBdC-sl19,l29,l39; lC,lL,lR,lB,lC,1,lC,2,lC,3d

3 ksl19,lC,1+lL+lB+lC−lC,2−l19−l29,l39,l29dysl19,lC,1+lL+lB+lC−lC,2−l19−l29,l39,l29d 3 S le

2sS− 1dD
lC,1+lC,2+lC,3S es1 − ld

S− 1
DlL+lR+lB

3F1 − eS1 −
l

2
DGL−lL−lR−lB−lC,1−lC,2−lC,3

+ o
lC,1=0

L−lL−lR−lB−lC

o
lC,2=0

lC

o
lC,3=0

lC−lC,2

o
l19=0

lC,1+lR+lB+lC−lC,2

o
l29=0

lC,1+lR+lB+lC−lC,2−l19

o
l39=0

L−lC,1−lR−lB−lC+lC,2

3 C9slC,1,lC,2,lC,3; lC,lR,lL,lBdC-sl19,l29,l39; lC,lR,lL,lB,lC,1,lC,2,lC,3d

3 ksl19,lC,1+lR+lB+lC−lC,2−l19−l29,l39,l29dysl19,lC,1+lR+lB+lC−lC,2−l19−l29,l39,l29d 3 S le

2sS− 1dD
lC,1+lC,2+lC,3S es1 − ld

S− 1
DlL+lR+lB

FIG. 7. (Color online)Illustration of the various definitionslC,1,
lC,2, lC,3, l19, l29, and l39.
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3F1 − eS1 −
l

2
DGL−lL−lR−lB−lC,1−lC,2−lC,3

. sB5d

We now use the binomial theorem and sum overlC,3, giving

dyslC,lL,lR,lBd

dt
= − fkslC,lL,lR,lBd + k̄stdgyslC,lL,lR,lBd + o

lC,1=0

L−lL−lR−lB−lC

o
lC,2=0

lC

o
l19=0

lC,1+lL+lB+lC−lC,2

o
l29=0

lC,1+lL+lB+lC−lC,2−l19

o
l39=0

L−lC,1−lL−lB−lC+lC,2

3 SL − lL − lR − lB − lC
lC,1

DS lC
lC,2

DSlC,1 + lL + lB + lC − lC,2

l19
DSlC,1 + lL + lB + lC − lC,2 − l19

l29
D

3 SL − lC,1 − lL − lB − lC + lC,2

l39
DsS− 1dl39sS− 2dl29 3 ksl19,lC,1+lL+lB+lC−lC,2−l19−l29,l39,l29dysl19,lC,1+lL+lB+lC−lC,2−l19−l29,l39,l29d

3 Sle

2
DlC,1S le

2sS− 1dD
lC,2S es1 − ld

S− 1
DlL+lR+lB

3 F1 − eS1 −
l

2
DGL−lL−lR−lB−lC−lC,1

3H1 − eF1 − lS1 −
1

2sS− 1dDGJ lC−lC,2

+ o
lC,1=0

L−lL−lR−lB−lC

o
lC,2=0

lC

o
l19=0

lC,1+lR+lB+lC−lC,2

o
l29=0

lC,1+lR+lB+lC−lC,2−l19

o
l39=0

L−lC,1−lR−lB−lC+lC,2

3SL − lL − lR − lB − lC
lC,1

DS lC
lC,2

DSlC,1 + lR + lB + lC − lC,2

l19
DSlC,1 + lR + lB + lC − lC,2 − l19

l29
D

3 SL − lC,1 − lR − lB − lC + lC,2

l39
DsS− 1dl39sS− 2dl29 3 ksl19,lC,1+lR+lB+lC−lC,2−l19−l29,l39,l29dysl19,lC,1+lR+lB+lC−lC,2−l19−l29,l39,l29d

3 Sle

2
DlC,1S le

2sS− 1dD
lC,2S es1 − ld

S− 1
DlL+lR+lB

3F1 − eS1 −
l

2
DGL−lL−lR−lB−lC−lC,1H1 − eF1 − lS1 −

1

2sS− 1dDGJ lC−lC,2

. sB6d

Note that this expression depends only onlC, lL, lR, andlB, hence our claim thatyss,s8d only depends onlC, lL, lR, andlB is
established. We now proceed to formally take theL→` limit.

We defineCslC, lL , lR, lBd to be the number of sequence pairs characterized bylC, lL, lR, lB, and note that

CslC,lL,lR,lBd =
L!

lC ! lL ! lR ! lB ! sL − lC − lL − lR − lBd!
sS− 1dlC+lL+lR+lBsS− 2dlB. sB7d

We therefore have thatzslC,lL,lR,lBd=CslC, lL , lR, lBdyslC,lL,lR,lBd. From this expression, and using the fact thatCslC,lR,lL,lBd
=CslC,lL,lR,lBd, we obtain

dzslC,lL,lR,lBd

dt
= − fkslC,lL,lR,lBd + k̄stdgzslC,lL,lR,lBd + o

lC,1=0

L−lL−lR−lB−lC

o
lC,2=0

lC

o
l19=0

lC,1+lL+lB+lC−lC,2

o
l29=0

lC,1+lL+lB+lC−lC,2−l19

o
l39=0

L−lC,1−lL−lB−lC+lC,2

3 SlL + lB + lC,1 + lC − lC,2

lC,1
DSlL + lB + lC − lC,2

lC − lC,2
DSlL + lB

lL
D 3 SL − lL − lB − lC,1 − lC + lC,2

lC,2
DSL − lL − lB − lC,1 − lC

lR
D

3 S le

2sS− 1dD
lC,1Sle

2
DlC,2F1 − eS1 −

l

2
DGL−lL−lR−lB−lC−lC,1H1 − eF1 − lS1 −

1

2sS− 1dDGJ lC−lC,2

3fes1 − ldglRS es1 − ld
S− 1

DlLS es1 − ldsS− 2d
S− 1

DlB
3 ksl19,lC,1+lL+lB+lC−lC,2−l19−l29,l39,l29dzsl19,lC,1+lL+lB+lC−lC,2−l19−l29,l39,l29d

+ o
lC,1=0

L−lL−lR−lB−lC

o
lC,2=0

lC

o
l19=0

lC,1+lR+lB+lC−lC,2

o
l29=0

lC,1+lR+lB+lC−lC,2−l19

o
l39=0

L−lC,1−lR−lB−lC+lC,2

3 SlR + lB + lC,1 + lC − lC,2

lC,1
D

3SlR + lB + lC − lC,2

lC − lC,2
DSlR + lB

lR
D 3 SL − lR − lB − lC,1 − lC + lC,2

lC,2
DSL − lR − lB − lC,1 − lC

lL
D
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3 S le

2sS− 1dD
lC,1Sle

2
DlC,2F1 − eS1 −

l

2
DGL−lL−lR−lB−lC−lC,1H1 − eF1 − lS1 −

1

2sS− 1dDGJ lC−lC,2

3fes1 − ldglLS es1 − ld
S− 1

DlRS es1 − ldsS− 2d
S− 1

DlB
3 ksl19,lC,1+lR+lB+lC−lC,2−l19−l29,l39,l29dzsl19,lC,1+lR+lB+lC−lC,2−l19−l29,l39,l29d. sB8d

Now, it may be shown in the limit of infinite sequence
length that only thelC,1=0 terms contribute to the sum. This
corresponds to the neglect of backmutations in the limit of
infinite sequence length. The proof thatlC,1.0 terms may be
neglected is fairly tedious, but is similar to the arguments
given in [25,27]. Therefore we do not give details in this
paper. Regarding the remaining terms, we may note that

SL − lL − lB − lC + lC,2

lC,2
DSle

2
DlC,2F1 − eS1 −

l

2
DGL−lL−lR−lB−lC

→ 1

lC,2!
Slm

2
DlC,2

e−ms1−l/2d,

SL − lL − lB − lC
lR

Dfes1 − ldglR → 1

lR!
fms1 − ldglR,

H1 − eF1 − lS1 −
1

2sS− 1dDGJ lC−lC,2

→ 1,

SlL + lB + lC − lC,2

lC − lC,2
DSlL + lB

lL
D

3S es1 − ldsS− 2d
S− 1

DlBS es1 − ld
S− 1

DlL
→ dlL,0dlB,0. sB9d

The last statement implies that genomes withlB.0 and
genomes withlL, lR simultaneously.0 cannot be produced
by replication. Therefore, if our initial population distribu-
tion is such thatzslC,lL,lR,lB.0d=0 andzslC,lL.0,lR.0,lBd=0 (as is
the case with our initial conditions), then we may assume
that zslC,lL,lR,lB.0d=0 andzslC,lL.0,lR.0,lBd=0 at all times.

Putting everything together gives us the infinite sequence
length equations given in Eq.(14).

APPENDIX C: DETERMINATION OF lim m\mcrit
− kequil8 „m…

To evaluatekequil8 smd for arbitrary lesion repair, we start
with the fact that form,mcrit, kequilsmd satisfies

0 = kequilsmd2 − Asm,ldkequilsmd − Bsm,ld. sC1d

Differentiating both sides gives

0 = 2kequilkequil8 − ]mAkequil − Akequil8 − ]mB. sC2d

Whenm=mcrit we havekequil=1, giving

kequil8 = − k

e−ms1−l/2dHS1 −
l

2
Df2 + f lsm,ldg − s1 − ldf l−1sm,ldJ +

l

2
e−msl/2d

3 + f lsm,lde−ms1−l/2d − e−msl/2d − khf1 + f lsm,ldge−ms1−l/2d − 1j

+
FS1 −

l

2
D f lsm,ld − s1 − ldf lsm,ldGe−ms1−l/2d −

l

2
e−msl/2d

3 + f lsm,lde−ms1−l/2d − e−msl/2d − khf1 + f lsm,ldge−ms1−l/2d − 1j
, sC3d

where we used the identity]mf lsm ,ld=s1−ldf l−1sm ,ld.
Note that the numerator of the first fraction is positive for

m.0 (where we are neglecting the factor of −k), so ask
→` and m→mcrit, if f1+ f lsmcrit ,ldge−mcrits1−l/2d−1=0, then
kequil8 →−`. Conversely, iff1+ f lsmcrit ,ldge−mcrits1−l/2d−1Þ0,
then the denominator ensures that the derivative remains fi-
nite.

Now, at the error catastrophe, we haveAsmcrit ,ld
=1−Bsmcrit ,ld. Therefore, plugging into our expression for
kequil8 , we get thatkequil8 is infinite if and only if e−mcritl/2

+e−mcrits1−l/2d−1=0. However, we have shown thatkequil8 is
infinite if and only if f1+ f lsmcrit ,ldge−mcrits1−l/2d−1=0.
Therefore, ifkequil8 is infinite, then we must havef lsmcrit ,ld
=emcrits1−ld= f`smcrit ,ld. For finite l, note that f lsmcrit ,ld
ø f`smcrit ,ld, with equality only whenmcrits1−ld=0⇒l
=1.

Therefore, forfinite l, limm→mcrit
kequil8 smd remains finite as

k→` as long asl,1.
When l =`, then kequilsmd=kse−ml/2+e−ms1−l/2d−1d below

the error catastrophe. It is readily shown that, except forl
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=0, the derivative at the error catastrophe becomes infinite as
k→`.

APPENDIX D: NOTES ON THE IMPLEMENTATION OF
THE STOCHASTIC SIMULATIONS

Stochastic simulations are run using a finite population of
N replicating genomes of lengthL. The simulation is run out
to some prespecified timeT at time steps of some prespeci-
fied Dt. We try to chooseT large enough to obtain good
equilibration of the population, andDt small enough so that
one can reasonably make a continuous time assumption.

At each time step, we cycle over each organism in the
population and determine whether it replicates in that time
interval. The replication probabilityphs,s8j of an organism
with genomehs ,s8j may be computed from the first-order
growth rate constant in one of two ways:phs,s8j
=minhkhs,s8jDt ,1j, or phs,s8j=1−e−khs,s8jDt. In practice, we
chooseDt to be sufficiently small so that the two definitions
yield almost identical results.

If an organism replicates, then it is effectively destroyed,
and it produces two new organisms. At the end of each rep-
lication cycle, we randomly remove organisms from the
population until the population size returns toN.
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