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This paper develops a Hamming class formalism for the semiconservative quasispecies equations with
imperfect lesion repair, first presented and analytically solved in Y. Brumer and E.I. ShakhigbahGN/
0403018, 2004 Starting from the quasispecies dynamics over the space of genomes, we derive an equivalent
dynamics over the space of ordered sequence pairs. From this set of equations, we are able to derive the infinite
sequence length form of the dynamics for a class of fitness landscapes defined by a master genome. We use
these equations to solve for a generalized single-fitness-peak landscape, where the master genome can sustain
a maximum number of lesions and remain viable. We determine the mean equilibrium fithess and error
threshold for this class of landscapes, and show that when lesion repair is imperfect, semiconservative repli-
cation displays characteristics from both conservative replication and semiconservative replication with perfect
lesion repair. The work presented here provides a formulation of the model which greatly facilitates the
analysis of a relatively broad class of fitness landscapes, and thus serves as a convenient springboard into
biological applications of imperfect lesion repair.
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I. INTRODUCTION catastrophe has been observed experimentaBy34, and is

. . . . believed to form the basis for a number of antiviral therapies
The quasispecies model has been a subject of ongoi 1-33

research in the field of evolutionary dynamics for over three In a'recent papef27], Tannenbaum, Deeds, and Shakh-
(ét_acadgs[g%.lThe model \:cvas ongmall;qc mt;‘oducbed byd novich developed the quasispecies equations appropriate for
1gen in [1] as a way of accounting for the observe describing DNA-based genomes. Such a description is a nec-
d|str|but|on_ of genotypes in _evolut|0n experl_ments with theessary first step toward making the quasispecies model a
Qﬁ RNﬁA"V'rus [23]. It has smlce_ been applied to jystemsquantitative tool for analyzing the evolutionary dynamics of
other than RNA genome evo u.t|0[|18,19|,24_—3p and has  pNA-based life. The original quasispecies equations were
eI/Seq proven to give quantitative results in certain CaS€Peveloped to deal with the replication dynamics of single-
[ 'I,'hq. | It of the th is th . ¢ stranded genomes, and hence assuowdervativereplica-
e central result of the theory Is the existence of anj,, |, conservative replication, the original genome is pre-

upper mutational threshold beyo_nd which natural .Selprtiogerved by replication. Double-stranded DNA, by contrast,
can no longer occyil-3|. Below this threshold, a replicating ¢ jicatessemiconservatively35-37. In semiconservative

population of genomes will eventually produce, over many, oy jication, the original genome is not preserved by replica-
generations, a “cloud” of closely related genomes clustere

b fow f licati Th “cloud on. Rather, the two strands of the genome separate, and
about one or a few fast replicating genomes. These “cloudsg e forms a template for the synthesis of the corresponding

are termed quasispecies, and are characteristic of the eVOIUéughter strandi35]. Because errors can occur during the

tlorAabry dynhamlcs Of. mar|1th|rurs]elsa such a‘T‘ I-[I|139,31—33. synthesis of both daughter strands, in principle the original
ove the mutational threshold, natural selection can NQyanome js destroyed by the replication process, so it is pos-

longer act to localize the population about the fast replicatin ible that both daughter genomes will differ from the parent.

genomes, and delocalization occurs over the entire genongy e 1 jllustrates the difference between these two modes

space. This localization to delocalization transition is knownmc replication

as the error catastroprﬁé—z’], a_nd It corresponds_ to the dis- The semiconservative quasispecies equatiofi2 ihwere

appearance of any viable strains in the population. The ermofe iyed under the assumption of perfect lesion repair. Briefly,
after replication has occurred, and both daughter genomes
have been synthesized, it is possible that there are still mis-

*Electronic address: etannenb@fas.harvard.edu matched base-pairs in the daughter genomes which were not
"Electronic address: jsherley@mit.edu corrected by various error-correcting mechanisms of the rep-
*Electronic address: eugene@belok.harvard.edu lication process itselftwo such error-correcting mechanisms
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springboard into biological applications of imperfect lesion
repair(an important example of interest to us is the modeling

' + of age-dependent chromosome segregation during stem cell
division, the so-called “immortal strand hypothesj8%]).
P P D This paper is thus a continuation and extension of the
Conservative replication work presented ifi27,30, and is organized as follows: In the

following section, we present the finite genome length qua-
sispecies equations for arbitrary lesion repair. While we can-
_ + not convert the dynamics over the space of double-stranded
genomes to the space of single strands, as was possible in
[27], we can nevertheless make an analogous transformation
. . o and convert the dynamics to the space of ordered strand
Semiconservative replication pairs. In Sec. Ill, we go on to establish the infinite sequence
length form of the equations for a class of fithess landscapes
which are defined by a single, “master” genome. In Sec. 1V,
we explicitly solve for the equilibrium behavior of a subclass
of these landscapes, which we call a generalized single-
are the built-in proofreading capabilities of the DNA repli- fitness-peak landscape. We also determine the critical muta-
cases, and the mismatch repair pathwgp]. Any remain-  tion rate necessary for inducing error catastrophe for this
ing mismatches will result in lesions along the DNA chain, ¢lass of fithess landscapes. In Sec. V, we explore the equilib-

which are recognized and repaired by various maintenancddum behavior with specific examples and discuss similarities
and repair enzymes present in the cell. However, after repli@nd differences with both conservative and semiconservative

cation has occurred, it is no longer possible to distinguisHeplication with perfect lesion repair. We also present results

between parent and daughter strands, and so the lesion frgm stoc.hastlc.smulatlons of finite populations of replicat-

correctly repaired with a probability of 1/2. ing organisms, in order to corroborate the theory developed
Lesion repair, however, is in general not perfect. Indeedin this paper. Finally, in Sec. VI we conclude with a sum-

while cells have evolved DNA repair mechanisms to dealmary of our results and discuss plans for future research.

with the presence of lesion@ucleotide excision repair, for

instance [35], they have also evolved mechanisms which

allow the cell to remain viable even with lesions in the DNA  Il. THE FINITE SEQUENCE LENGTH EQUATIONS

genome. For example, transcription can ofter_1 still occur in o From double-stranded genomes to ordered sequence-pairs

the presence of lesions due to enzymes which are able to )

“read past” the effected region of DN85]. Therefore the Double-stranded DNA consists of two complementary,

incorporation of imperfect lesion repair is a potentially im- antiparallel strandg27,35. Each DNA genome is defined by

portant extension of the semiconservative quasispeci§e pair of strands{o,c}={c, 0}, where o denotes the

model. complement ofs. If each base is drawn from an alphabet of
In a recent work[30], Brumer and Shakhnovich intro- size S (where S=4 due to Watson-Crick pairingand if b

duced the _semicon_servative quasispecies equation_s with ingkenotes the complement of a basethen if o=hy- b, we

perfect lesion repair. The authors postulated that mperfeqﬁave, by the antiparallel nature of DNA, thatb, - --b;.

lesion repair may be necessary to reconcile the high point- 1o replication of a DNA genomgr, o} may be divided
mutation rates observed in certain canggng microsatellite into three stages. '

instability, or MIN, tumor$ with semiconservative replica- (1) Strand separation—The genome unzips to produce
tion [30]. The argument stems from the fact that semiconserg, parent strandsy and .

vative replication is considerably less robust to the effect o (2) Daughter strand synthesis—Each parent strand serves

replication errors than is conservative replicaj@i]. How- 55 the template for the synthesis of a complementary daugh-
ever, mutational robustness can be increased by reducing tlggr strand.

efficiency of lesion repair. Imperfect lesion repair breaks the (3) Lesion repair after cell division.

perfect Co”e'?‘“on between the parept and daughtgr strandgy, illustration of semiconservative replication may be found
thereby allowing for better preservation of genetic informa-;, 27].

tion [30]. Thus semiconservative replication with imperfect g yepjication mechanism leads to the semiconservative
!eS|on repair can bghave more like a conservatively rep"catQUasispecies equations developed]:
ing system in certain cas¢30].

The purpose of this paper is to develop a Hamming class  dx, 5

PP

FIG. 1. (Color onlineg Comparison between conservative and
semiconservative replicatioR. denotes the parent strands, whHie
denotes the daughter strands.

formulation of the semiconservative quasispecies equations =~ [Kga + KO X + > Kio' o XKo" o'}
with imperfect lesion repair, in analogy with the Hamming {o" .07}
class formulation developed for the original semiconserva- X [p(o’ {o,0}) + p(o {o,oh)] (1)

tive quasispecies equatiofid7]. Such a formulation greatly . . .
facilitates the analysis of a broad class of “master-genome™wherex, 5 denotes the fraction of the population with ge-
based landscapes, and may therefore serve as a convenieome{o, o}, k5 denotes the first-order growth rate con-
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stant, or fitness, associated with gendmes}, p(o’ ,{o,d}) Finally, we definep((o”,0”"),(o,0")) to be the probabil-
denotes the probability that the parent straridforms the ity that ¢”, as part of genomégd”,d”"}, becomeso, with
genome{o, o} after daughter strand synthesis and lesion redaughter strand’ (after daughter strand synthesis and lesion
pair, and x(t) =3, 51K, 5%(05} IS the mean fitness of the repain. Then it follows that

population. o ,

When lesion repair is imperfect, the correlation betweerP((¢”, ") {0, 0"})
the tW?‘ st(;ar(;ds is broken, and we mu?t r(ionfs;[der a}more p((o”, "), (0,0")) + p((0”,0™), (o, 0)), if o # o
generalized dynamics over genomes of the fdumo'}, = . , oo
where botho and ¢’ are arbitrary. Following the derivation p((o",0™), (e, 0")), to=a’.
in [27], we obtain the quasispecies equations, (4)

For ¢’ # o, we therefore obtain that

dx{(r,(r’} — dy(U'xU’) 1 dx{U’xU"}
a [Kigory + KO Kooy ¥ 2 Ko gmXigr o) dat 2 dt
{U’”,aj”}
X [p((0”,0") {o,0"}) + p((0”,0") {00 })]. =~ [K,on + K050 + <d’2'"> K" amY(o" ")
2 7
X[p((d",0"),(a,0")) + p((d",0"),(c",0))].

©)

Here,p((d”,0"),{o,d'}) denotes the probability that parent The  same equation  holds  for y,,, since
strand ¢”, as part of genomdo”,o”}, becomes genome zp((oﬂﬂw),{G,U}):p((dr,d,/),(U,U))er((oﬂ,&”),(0,0))_
{o,0"} after daughter strand synthesis and lesion repair. Irherefore the quasispecies dynamics over the space of or-
addition, we havex(t) =2, ;Ko gmXgn gm. The defini-  dered sequence-pairs is given by

tions are otherwise unchanged from the original semiconser-

vative equations. dYg.o) o

In the semiconservative quasispecies equations, the d == [0 + KO (o) + > K(g" oY (c" o)
complementarity property allows one to convert the qua- (o",0™)
sispecies dynamics over the space of double-stranded ge- X [p((a”,a"),(o,0")) + p((a”, "), (0" ,o))].

nomes into an equivalent, and considerably simpler, dynam-
ics over the space of single stranfia7]. With imperfect
lesion repair, the lack of perfect correlation between the two

strands in the genome makes a conversion to a single strand In Append|x A we show_that I_Ec(ﬁ) redu.ces to the origi-
. . nal semiconservative quasispecies equations wheh. We
model impossible. Nevertheless, we can make an analogo

. ) Wso rederive a result of Brumer and Shakhnov|&0],
transformat[on of the dynamics, from double-,stranded 9€Which states that when=0, then the semiconservative qua-
nomes{o, o} to orderered pa|rlsof strands (o, 0"), as fol-  gigpecies equations may be transformed into equations which
lows: We definey,.o1)=Y(o",0)= 3X00} If oF 0’ @NdY(,5)  are similar in form to the conservative quasispecies equa-
=X(g,0}- AlSO, we definex ;)= K(o' o) = Koo} We then have  tions.

that As a final derivation in this section, we will obtain an
equivalent formulation of Eq(6) which will prove useful
later. To begin, suppose that the fithess landscape is such that
KGo) =Koy Furthermore, suppose we have that

(6)

> KignomXiaremlp(0”,0™) {a,0"}) p((0”, "), (o, a)=p((c”,0"),(a,0")). Then, if our popu-
{o”, 0"} lation is initially lesion-free, we claim that; =Yy, at
"o ’ all times.
+p((e”,0"),4a, )] To see this, note first that a lesion-free population is
=2 > [ oY (0. amP((0”" ") {0, 0" }) equivalent to the statement that, ,,=0 if o’ # 0. Then if
(" ") o 0 ' ' o' #o, it certainly follows thats’ # &, henceyg41=0

=Y(o.0n- ON the other hand, i’ =0, then yz 1=y .0

* KignoYion,onPUo”,0") {0, 0" D] =Y(s.o)- Therefore a population which is lesion-free satisfies

+2 > K" oo omP((d", ") {o,0'}) the propgrty thay o)=Y (.. for all sequence pa.il’ﬁr,o“).

{0} Then in order to prove thalg =Y. at all times, we

: - , need only show thay; ;=Y. at some timet implies
=2 2 Ko (@0 o). @ that dy(gpr)/dt=dy(,., /dt. We have
(0’”,0””) g,0 o,0 1
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dY(oo)
dt

== [K(E,E’) +?(t)]Y<EE'> + E K(o",0mY(a" o)
(0_//'0_///)

X [p((a”,0"),(a,0")) + p((a”,0™),(0",0))]

== [K(U,o”) + F(t)]y(o',a") + E K(?’,(_r’”)y((_f',F")
(OJI'(T///)

X [p((a”,0"),(a,0")) + p((”",0"),(0",0))]

=~ [Kigon * KOWoon ¥ 2 KioromYiomom

(o0
X [p((a”,0™),(a,0")) +p((¢”,0"),(0",0))]
_ dy(u’,tf’)
~odt @)

which establishes our claim.

PHYSICAL REVIEW E70, 061915(2004
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FIG. 2. (Color onling lllustration of the various definitions for

So let us assume that our fitness landscape is such thafyc, o(N)C, anda nc- We use the four baseslening(A), guanine

K@oh=Koon and also that p((”,0"),(0,0"))
=p((¢”,d"),(o,0")). If our population is initially lesion-
free, then for all sequence paifgr,o’) we haveyg;s)
=Y(s,0)- THiS gives

dy(o',a") _
dt - [K(o',o") + K(t)]y(a,a’)
+ > Ko oY (o omP((0”,0"),(a,0"))
((f” (r"/
+ X KgrgnY@amp((@,d"), (0", a))
((),”’Uj”)

== [K(O',o") +F(t)]y(0',¢7’)
+ D KoY (onomP(a”, "), (0,0"))

(0_// "

+ 2 KengmYonamP(a”,0"), (@ ), (8)
(O,H’OJN)

which can be simplified to give

dy(o’ (T’)
at ~[Kigor) ¥ KO W(oon * 2 KioromY(orom)
(",
X [p((a”,0™),(a,0")) +p((d”,d"),(c" ,0))].

9)

(G), thymine (T), and cytosine(G). The Watson-Crick pairs are
A-T andG-C [35]. The notations 5and 3 refer to the chemically
distinct ends of the polynucleotide chaif85].

match probability, denoted by, ,,;, and a base-pair inde-
pendent lesion repair probability, denoted Xyy ,; (the ge-
nome dependence of the mismatch and lesion repair
probabilities arises from the fact that different genomes may
code for different enzymes, or none at all, that are involved
in DNA repair. See, for instanc4-249).

We begin with some definitionsee Fig. 2 We defineoc
to be the subsequence of basesriwhich are complemen-
tary with the corresponding basesdnl. That is, suppose
=b;---by, and suppose for indicag<i,<---<i, we have

thatb =b/_ 41 Thenoc=b; ---b; . We also definerg to be

the subsequence of correspondlng bases’inso thato
—bﬁ_lkﬂ : bL_I1+l Finally, let o denote the subsequence of
bafes |Do” corresponding to the bases ir, so thatof
=bi1"'bik-

Now, define oy to be the subsequence of basesain
which are not complementary with the corresponding bases
in ¢'. That is, given the complementary indicés<i,
<---<iy defined above, lat <i,<---<i_, be the remain-
ing indices. ThertrNC:bii-~~biL_k. We defineoy to be the
subsequence of corresponding basesoin so that oy
:bl,‘_ill_—kJrl“ b, _i/ 1 Finally, we let oy, denote the subse-
quence of bases i’ corresponding to the basesdf, SO
that of,c=b, - b”

We nowllet p((o” d"");0") denote the probability that

We will make use of these equations when considering the”, as part of genomgo”,¢”"}, is paired witho”’ during

behavior of the quasispecies dynamics in the limit of infinitedaughter

genome lengths.

B. Determination of p((¢”,0”"),(o,0"))
We now compute((¢”’,d”),(o,0')), assuming that with

strand synthesis. We also lgi{(o”,d”"")
—(o,0');d”) denote the probability that” becomesr and

o' becomesy’ during lesion repaitthe presence of the”

in this notation is to indicate that” comes from genome
{d”,d""}. Presumably, the enzymes involved in lesion repair
are the ones that came from the original parent cell, hence
the lesion repair probability should b, .. Then we have

each genomdao, '} there is a base-pair independent mis-that
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p((e”,0™),(0,0") = 2 pl(0”,0™"");0™)

mnre
o

xXp((a”,0"") = (0,0");0"). (10)

Consider some bad# in ¢”, and suppose thdt’ is part of
o¢. If b differs from the corresponding babgin o, then it
is clear that during daughter strand synthesis, it must b

paired withb;, and during lesion repair it i that must be
repaired to fornb;. Therefore, ific=Dy(o%, oc) denotes the
Hamming distance betwees: and o¢, thenb{ must be

pairEd with b;, and the(b/,b;) lesion must be repaired to
(bi,bi)_, in I places. The probability of mispairing a givéfi
with by is €, ,»~/(S-1). The probability of lesion repair is

A om- Finally, assuming lesion repair occurs, the probabil-

ity of repairing b is 1/2. Assuming that”"’ is chosen to
satisfy the pairing requirements described above, we obtain
factor  of [Ny g€ m/2(S-1)]'c  contribution to
p((a”,0"");0"p((0”,0""") = (o,0");0™).

Now, letLc denote the length af, so thatol. ando are
equal inLc—Ic positions. Then, given somi’ in one of
theselLc—I¢ positions, it can be paired with any other base.
Let I ; denote the number, among these positions, whgre

is mispaired with a base other thef=b;. Then, among these
Lc—Ic positions, b is paired withb{" in Lc—Ic—l¢; posi-
tions. Since lesion repair must happeridn positions, then

PHYSICAL REVIEW E 70, 061915(2004)

for an appropriately chosew”™’, we have a factor of
D\{OJI’UJH}E{UJI’OJH}/Z(S_ 1)]IC,1(1—E{OJ,’OJ,,})LC_IC_lQl contribution
to p((o”,a"");0")p((0”,0"") = (07, 0"); 0").

Finally, let Lyc denote the length ofryc. Sinceoyc and
oy c are not complementary, no lesion repair can happen at
positions inoyc. Therefore,oy cannot be changed, hence
we must havery.=oyc. Also, a mismatch must occur at all

Sites alongo},. to form the corresponding bases ir.

Once again, for an appropriately chosety, we have a fac-
tor Of 5OJIQCUNC[(1_)\{OJ”UJ”}) f{o.lr’o.m}/(s_ 1)]LNC Contribution to
p((a”,0"");d")p((6”,0"")— (o,0"); ). Therefore, given
a daughter strands””’ for which (¢”,¢”’) can become
(o,0") after lesion repair, we have

p((o_//,o_////);O_///)p((o_//,o_/!//)

— (0,0");0")
)'c( )LNC

< (1 - )\)G{UJIVOJH}
=90 o
C”NC
A e lca
M) (1= € ) e e,

S-1

)\G{UJIVOJH}
2(s-1)

a

7N
X 11
( 2(S-1) (1)

To evaluate the sum in Eq10), we need only sum over
those ¢’ for which p((¢”,d"");d")p((c",d"")
—(o,0');d"”) is nonzero. Thus, we sum over all possible
values oflc 4, taking into account degeneracies for each
value ofl¢ ;. This gives

p((a”,0™),(a,0")) = 2 p((a”,0"");0")p((c",0""") — (0,07);0”")

)LNC

lca
(1 - 6{0”,0‘"’}) LC_IC_ICvl

)\{0'",0'"’}

o
_ 5 ( )\{UJI’UJ//}E{U.//'(’J//})“:( (1 - )\{U.//‘a.///}) 6{0.1110.///}
NeTne\  2(S-1) s-1
Lele - N 1
x 3 (LC IC)(s— 1)'c,1<—{'f LN CR
le=0\ lea 2(S-1)
_ 5 ( A{OJ!’OJ/I}E{OJIVOJII})lc;( (1 - )\{0'",0""}) 6{0.11‘0.///}
Nene\  2(S- 1) s-1

Note thatL.=L-Lyc, and note that sinceyc is simply the
number of positions where ando”’ are not complementary,
it follows that Lyc=Dy(o, ¢’). Therefore, our final formula
is,

p((a”,d"),(0,0"))

= )\{0"',(1"”} 6{(,.//’0://}
= Oy coNC
X (

)DH(O'E,Uc)
2(S-1)

N

(1 - )\{0'",0"”}) E{O‘",O‘"’}
S-1

) Dy(a,0")

Lne Lele
) |:1 —6{011'0.///}<l - >:| . (12)

2

)\{O'",o"”}
2

L—DH(O',E')_DH(O'/CI:,UC)
X 1 - E{o"’,o"”} 1 -
(13

For the remainder of this paper we will assume tagt,
and\, ., are genome independent, and hence may be de-
noted bye and\ (unless otherwise indicatgd

Ill. THE “MASTER” GENOME FITNESS LANDSCAPE

We will now develop the infinite sequence length equa-
tions for a class of fitness landscapes defined by what we call
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a “master” genoméoy, o). A subclass of these landscapes

is a generalization of the single-fithess-peak landscape
[3,27], which is the simplest landscape for which analytical
results are obtainable. We will solve for the equilibrium
mean fitness and the error threshold associated with this class
of landscapes in the next section.

Before proceeding, we note that the infinite sequence
length equations are taken wigla=Le held constant. Be-
cause the probability of correct daughter strand synthesis is
(1-€)- — e asL — o, holding u constant amounts to fixing
the genome replication fidelity in the limit of infinite se-
quence length. c=3,1,=11g=1,1g=2

The “master” genoméoy, oo} gives rise to the ordered o _ _ o
sequence pairéog, op) and (og,ap). In the limit of infinite FIG. 3. (Color onling Diagram illustrating the definitioni, |, ,
sequence length, it is possible to show that, with probabilityr andle-

1, the sequences, and o, become infinitely separated from ¢|ass. Because taking the complement of a sequence essen-
each other, i.e.Dy(oq,00) — [27]. Thus we may regard tjally amounts to a relabeling of the bases defined by a one-
(09,00) and (o, 0p) as infinitely separated from each other to-one map, and to a reversal in the sequence direction, it
in the ordered sequence pair space. follows that (o-,0”’) is a sequence pair of the second class,
The infinite separation between, and oy allows a divi-  characterized by the parametégs|,, |z, andlg. Therefore
sion of the sequence pairs into three classes. A sequence péir' ,o) is characterized by the parametégs g, |, andlg,
(o,0") is said to be of thefirst classif Dy(o,00) and — and SOk o) =Ko 57 = Kl gl lp) = Kol lnls) = K(oo")-
Du(o’,0¢) are both finite. A sequence pdir,¢’) is said to If (o,0’) is of the second class, théa’, o) is of the first
be of thesecond class Dy(o,00) andDy(o”,0¢) are both  class. We then haveg 5= kG 5= K(o'.0) = K(o.0")-
finite. Finally, a sequence pair not belonging to either one of Finally, if (o-,¢”) is of the third class, then using the iden-
the first two classes is said to belong to thd class Using  tity Dyy(o;,05)=Dy(0y, 0,) we can show thafo,o”) is also
the Triangle Inequality, it is readily shown that a sequenceof the third class. Thereforegz1=1=k, ;).
pair cannot belong to more than one class. Based on our formula fop((¢”,¢”),(o,c")), we have
A given sequence paifo,o’) of the first class can be that p((o”,0”),(o,0"))=p((¢”,d"),(0,0")). This result
characterized by four parameters, dendted,, Iz, andlg.  again follows from the fact that taking the complement of a
The first parameter|c, denotes the number of positions sequence essentially amounts to a relabeling of the bases,
whereo ando’ are complementary, yet differ from the cor- and a change in the direction that the sequence is read. Thus
responding positions o, and oy, respectively. The second all Hamming distances in E¢13) are unchanged.
parameter|,, denotes the number of positions wheralif- Therefore, with this choice of landscape, and with a
fers from oy, but the complementary positions ' are  genome-independent and \, we have, assuming that our
equal to the corresponding onesdg. The third parameter, quasispecies population is initially lesion-freehich is done
Iz, denotes the number of positions wherdés equal to the by taking Y(ogo=Y(ogoy=1/2, for instance that yi
ones inay,, but the complerrfntary positions ' differ =Y(s.01)» @nd s0 Eq(9) applies.
from the corresponding ones ifp. Finally, the fourth param- We allow our system to come to equilibrium from the
eter,lg, denotes the number of positions wher@ando’ are  jpitial condition Yooy =Yooy =112 (€quivalent tox;,

X . 00~ oot
not complementary and also differ from the corresponding. ; e choose this initial condition because it guarzgntees
positions ingy and oy, respectively. These definitions are

! .0 . convergence to the unique stable equilibrium solution of the
illustrated in Fig. 3. A sequence pdio,o’) of the second

) ) 2 model. The reason for this is that all genomes are mutation-
class may be similarly characterizeeixceptop and g are 41y aecessible fronfio, o). Because of the neglect of back-
swapped in the definitions given abgve

. ; . mutations in the limit of infinite sequence length, other initial

_ We assume that the fitness of a given sequence pair of the, \jiiions may lead to different regions of the genome space

flrs_t class is determined by, |, IR’ andlg, hence we MaY  phecoming mutationally disconnected from each other, pre-

write that k(y,e1)= k(g Ity THe fitness of a sequence pair ening proper equilibration from occurring

(o,0") of the second class is determined by noting that \\e claim that if(or, o') is of the first class, then in E¢9)

(0" ,0) is of the first class, and tha, .=k, ). We take  \ve need only consider contributions fra@’, ") which are

the third class sequence pairs to be unviable, with a firsta|so of the first class. The reason for this is thds a finite

order growth rate of 1. Hamming distance away from,. Therefores” must also be
We also assume that; | 115 = Kiglpl lp- THIS IS @natu- 3 finite Hamming distance away from since the probabil-

ral assumption to make if one assumes symmetry betweety of making an infinite number of replication mistakes is

the two master strands, and o,. This assumption also im- zero. For the same reasoa” must be a finite Hamming

plies thatx(;57) = K(4,07)- TO See this, let us first suppose that distance away fromo, for y(»,» to be nonzero. Thus

(o,0”") is of the first class, and is characterized by the pa{o¢”,¢””) must be of the first class to make a mutational con-

rameterslc, Iy, Iz, andlg. Then(¢’,0) is also of the first tribution to (o,0”), as claimed.

Gy
5
A
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In Appendix B, we show that, for sequence pdiss o) These equations describe the quasispecies dynamics for
of the first classy,,,-) depends only of, I, I, andlg (we  the first-class sequence pairs. An analogous set of equations
note that this certainly holds &0, given our initial condi- mMay be derived for the second-class sequence pairs, where
tions). We sum over the population fractions of all first classWe let ;) .1, denote the total population fraction of
sequence pairs characterized by a given ség,df, Iz, and  second-class sequence pairs characterized by the parameters
lg, and reexpress the quasispecies dynamics in terms of theke I, Iz, andlg. Note that a sequence pdir, ') is of the
quantities. Defining(|o|Ly|Ry|B) to be the total population frac- second class if and only {0’ , o) is of the first class. There-

tion of first class sequence pairs characterizeddy,, Iz, ~ fore, since Y on=Y 0 it follows that z_; i1

andlg, we obtain, from Appendix B, that = )
B Liclpllg)
dz;_0.00 We can provide an expression for the mean fitness in
e o [K(ICO 0.0 +7(t)]z(|co 0.0 terms of thez“O,L,,RJB). First note that, since the total popu-
dt lation fraction of the third class sequence pairs is
o4 [ng\lcte = 1-3 02 =021 =021=0{Z Ilp) T Al iplg): It follows
4+ 271NN — Al that the mean fitness is given by
I\ 2
I
|(’:=0 c |I=0 |g=0 © o w
”n ! "an n ’ non 7(t) = E E E 2 X (K
XK 11 1 01 1 11 15,0) 120120 1520 1220 (clulrlgHlclUlrlg)
dz;_1,>0,00 = o
ooy — + K +1-
dt = [K(IC,IL,O,O) + K(t)]Z(IC,IL,O,O) (IC’lR’lL’lB)Z(lc'lL'lR’lB)) ICE:O ILE:O IRE:O IBE:O
| , -
+ i[,U«(l —N) g 1N EC i()\_;/,)'c X (gl il * Al irle) - (15
I! =0 I\ 2 For our particular class of fithess landscapes, for which
T we have Yo on=Yon We get Y i1 19= Y@ o= Yoo
X CEC E " Py ” r :y(lc'lL'IR’lB), and SOZ(IC"R’IL’IB)=Z(|C’IL'IR'|B)' Thls allOWS us to
KA o G 15, 0 A1 I e1715,00 reexpress the expression for the mean fitness as
17=0 15=0
dZ1_0),-00 B K)=2> > 2 > (Kol nly ™ DZogl gty + 1
. [K1c0100 + €(D]Z1 01,0 'c=01.=01g=01g=0
(16)
IC |’
1 1/ Ap\'c
lrarp(1M2) Y = [ M
+ |—,[M(1 —N)]Re HINA Y I ( > ) IV. SOLUTION OF THE GENERALIZED SINGLE-
R lg=0 ¢ FITNESS-PEAK LANDSCAPE
Icle = The simplest and most commonly studied landscape in the

X Komy "y oyt
E E (701108 0 | 1 17 15.0)»
|//:O |//:0
1 2

quasispecies model is known as the single-fitness-peak land-

scape. For the single-stranded RNA genomes modeled in the
(14) original quasispecies equations, this landscape is defined by

a “master” genomery with a first-order growth rate constant
The reason why genomes where bhttandlg are nonzero, k>1, while all other genomes have a first-order growth rate
or wherelg is nonzero, cannot be produced by replication, isconstant of 1. Thus the master genome is said to be viable,
as follows: Given a parent strardwhich differs fromoy in while all the other genomes are unviable.
| places, the probability of correct daughter strand synthesis For semiconservatively replicating, double-stranded DNA
in thesel places is(1-€)'=(1-u/L)'—1 asL—c. There- genomes, the single-fitness-peak landscape is defined by a
fore any mismatches that occur will occur whereand oy “master” genomdoy, op}. When converting the quasispecies
are identical. Wherever lesion repair does not oceure-  dynamics from the space of genomes to the space of single
mains identical tooy in the final genome. The result is a strands, the resulting single-fitness-peak landscape becomes
sequence pair for which =Ig=0. Similarly, a parent strand a two-peak landscape with “master” sequenegsind oy.
o which differs fromay in a finite number of positions pro- For imperfect lesion repair, it is therefore also natural for
duces a sequence pair for whigk=lg=0. Therefore, as is us to first study the single-fitness-peak landscape. In this sec-
reflected in the equations, it is impossible for replication totion, instead of considering a single-fitness-peak landscape
produce sequence pairs for whi¢h and I are simulta-  where any change to the “master” genofog, o} results in
neously nonzero, or for whicly is nonzero. Since the popu- an unviable genome, we consider a “generalized” single-
lation fractions of these genomes is initially 0, they remain Ofitness-peak landscape, where the master genome can sustain
for all time, hence we may simply assume tizaf, 1.1,  a finite number of lesions and remain viable.
=0 if I, andlg are simultaneously nonzero, orlf is non- In the limit of infinite sequence length, thdesion land-
zero. scape may therefore be defined as follows: For sequence
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pairs of the first class, we defir@,o,L,|R,,B)=k>1 if c=0 =)=k for u=0. This simply reflects the fact that when rep-
andl_+Ig+lg=I, otherwisex, i.1,=1. The landscape of lication is error-free, the population consists entirely of vi-
sequence pairs of the second class is of course defined by tRBle genomes. Therefore, for sufficiently smallthe equi-

landscape for sequence pairs of the first class, g, llorium mean fitness is given by
=K, o). All sequence pairs of the third class are unviable. f 5
Because we may make the assumption #hat |, =0 if =)= Al M) + VA, M)+ 4B(1,\) _ (23)
Ig# 0 or if bothl_ andlg are nonzero, we need only consider 2
Zigl,.0,0 @NdZ 00 Furthermore, by the symmetry of our g equilibrium mean fitness is given by this expression
landscape we have, i1 00=21.0,",0)- until the error catastrophe, which occurs when the value of
We define the following quantities for use in our calcula- x(t=«) given by the formula above equals 1. At this point,
tions: the selective advantage for remaining viable is no longer

sufficiently strong to localize the population about the viable
genomes. The fraction of viable genomes drops to 0, and the
fitness of the population simply becomes the fitness of the

[ [
2=Z0,0,00 %" > Zo),,00t > Z(0,0)5,0)

=1 Ig=1 _
unviable genomes.

| =
_ 23 (17) Settingk(t=o)=1 in Eq.(23), it is possible to show, after
= 40,000 - 40.017.0) some manipulation, that the critical value @f denotedu,
h is the solution to the equation,
|
e—,u,(l—)\/Z) k+1
7= 2 Zooy 0, (18) . = : (24)
I'=0 2-e N2 K2+ £y (u,N)] = fi(m,\)
2= E Z0.01".0)- (19) V. RESULTS AND DISCUSSION
I'=0 A. Behavior of the model for specific values of and A
We then have, from Eql4), that 1.1=0
dz0,0,0.0 _ When|=0, our fitness landscape corresponds to a single
T (1N (1 — . ! . .
T [k+k(t)]Z0,00,0 + 267 [(k= 1)z, + 2], fitness peak landscape which tolerates no lesions. We have
fo(ue,N)=1, so, ak— o, we have, at the error catastrophe,
dz that
1 — (1=
— = - [k+k(0)]zg + € #INI[L + £ (u, M) ][(K— Dz + 2],
il LSC) [1+fu Mk = Dz + 23] .

1
e = 5 (25)

dz, _—
—= = —k(t)z, + (e*N2 + @AM — )[(k- 1)z + 2,],
dt Kz + ( i 12+ 2] When\=0, we obtaine #cit=1/3, while when\=1, we ob-

(20) tain e #ci’?=1/2. Note that, after daughter strand synthesis
and lesion repair, the probability that a given parent base is
whereﬁ(,u,)\)EE:,:Ol/I’![,u(l—)\)]". matched up with the proper daughter base is given by 1-
Now, note thatzy=27 00,0+ 2(z1=Z0,0,00)- Furthermore, +(A/2)e. The reason for this is that correct base pair synthe-
note from Eq(16) that x(t) =k(2zo) + (1 - 2z5) = 2(k—1)Zy+ 1. sis occurs with probability 1e. A mismatch occurs with
Setting the left-hand side of EqRO) to 0, we may system- Probability e, which is correctly repaired during lesion repair

atically eliminate variables to obtain with probability \/2. In the limit of infinite sequence length,
the probability of correct daughter strand synthesis then be-
_ Z comes lim . [1-e(1-\/2)]-=e#(1N2),
T K(t=w) — (e HN2) 4 grr(1N2) _ ) Note then that foih=0, the critical daughter strand syn-

o . thesis probability is lower than fot=1. The reason for this
X[k(t=o2)"= Alu, Mt =) =B(w,M], (2D s that when lesion repair is turned off, the parent strands are

where unaffected by the replication process, and hence the informa-
tion in the master genome is preserved by replication. Thus,

Al N) = K([(1+f(,\) ] AN — 1) — f(u,\) g 1M although viability may be lost through erroneous replication,
+e N2 _ 7)) preserving the information in the parent strand makes it pos-

sible to recover a viable genome in the next replication cycle.

B(u\) = K(eHN2) 4 g u(1N2) _ 7). 22) The result is a delay in the critical replication fidelity to a

lower value ofe#eit than would be expected if it were as-
Equation(21) admits multiple solutions. To determine the sumed that unviable genomes cannot replicate into viable
physical solution at a givem, we note that we wank(t  ones(the expected value from such an assumption is).1/2
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2. == one viable copy per replication cycle. Otherwise, the net
For I ==, our fitness landscape is one where only one ofdrowth rate of the viable genomes becomes negative, and
the “master” strands is necessary to confer viability. In this'€Plicating faster simply kills off the viable population more
case, we havef.(u,\)=e“0™," which gives A(x,\)  AUicKly.

=B(u,\)— 1. Below the error catastrophe, we therefore have For arbitrary I_esmn repair probabilities, We can determine
the value ofu,;; in the limit of k— < by solving

— o — (e HND) 4 g u1N2) _
K(t =) =B(u,\) = k(€N + g+ 1. (20 o (1N2) 1

Note that forh=0 we obtaink(t=%)=ke*. Thus, when le- 5 _e 2 T 5 +f(u,\)’ @7
sion repair is turned off, we obtain an effectively conserva- '

tively replicating system. The error catastrophe in this casevhich may be rearranged to give

can be delayed to arbitrarily high mutation rates by increas-

ing the replication rate of the viable genomes. This result [2 +f)(u,\)]e #AND 4 gV2 _ 2 =, (28)
was first derived by Brumer and Shakhnov|[&0] and led to .

the hypothesis that imperfect lesion repair could reconciléVhenx=0, fi(x,)\)=1, so the left-hand side evaluates to 2.
semiconservative replication with the high mutation rates ob¥Vhen —u=%, the left-hand side evaluates to
served in many cancetspecifically the microsatellite insta- 1Ml fi(k,\)e 1™V +e7#N2-2]. Forfinite I, f(u,\) is

bility, or MIN, tumors). a polynomial, hence we obtain a limit of -2 far>0, and a
limit of -1 for A=0. Therefore, by the Intermediate Value
B. Similarities to both conservative and semiconservative Theo.rem,. Eq(28) has a solution, and so (_av.enlas».w, Mecrit
replication remains finite. This means that, for all finitesemiconser-

. . licati it i toct lesi _ vative replication with arbitrary lesion repair is similar to the
Semiconservative replication with imperfect lesion repalryriginal semiconservative model in that there is an upper

bears a number of similarities and differences with semicongnyji 14 the mutation rate before the error catastrophe occurs,
servative replication with perfect lesion repair and to CONSeripdenendent of the growth rate of the viable genomes.
vative replication. We have shown earlier that the original ¢~ |- then  f(u,\)=e1N which  gives

semiconservative equations are obtained whef. Further- Iém 2(e#0M2) 1), When ) >0, this limit is -2, so again
M—;C}O - 1 L

more, we have also shown that when lesion repair is turne remains finite. When. =0, note that Eq(28) evaluates
i i crit . -\
off, then if the fitness depends on only one of the strands, 2e-#=0, which has no solution for finitg.

miconservatively replicatin lation mes an effec- . . .
semiconservatively replicating population becomes an effec Therefore, unlesa=0 andl=«, semiconservative repli-

tl\;ierly fgk?ast?ilri\tliaeusvz:}( drfoﬁl';atzcgnormi{xf&%r?g;?ﬂ iﬁj'og "€ cation with arbitrary lesion repair also has an upper bound to
pair p 9 Y the mutation rate before the error catastrophe occurs. This

IS interesting to explqre what. fea}tures from pOth SEMICONSeI akes sense, because, to ensure that after replication at least
vative and conservative replication are retained.

There are two key differences between conservative an ne of the daughter genomes is viable, it is necessary to
. . y dire ! : revent lesion repair from creating an unviable genome, and
semiconservative replication which we will explore here.

it is necessary to prevent lesions from destroying viability.

E:ﬁ: %feaalllﬁ E%L;hsii?glié';g?jags 2': I?gdﬁcc:t?f' tshest?a ?1:]"[')2 The second feature of semiconservative and conservative
_ vely rep _g Y replication which we will consider has to do with the behav-
low the error catastrophe ke #, which givesu=In k. For

; ; " ior of k(t=o) near the error catastrophe. Defirgyw)

a semiconservatively replicating system, we have an equilib-—, . ;
fium mean fitness ofk(2e#2-1), which gives gy —K(t—_oc), and let us consider the behavior @gqu”(m for
=21In2/(1+1/k). Note that, ak— o, ui;— o for a conser- /‘T:Mcm- i licati , - ket
vative system, while for a semiconservative systemg; _ror c?nseer Ive  replication, Keq””('“)._ €” s
—21In2. Thus, for a conservatively replicating system, the“mﬂﬂﬂém"equ”(“)__1' _For semiconservative - replication,
error threshold can be pushed to arbitrarily high mutatiorfequi()=—Ke*2, s0 lim, - requm)=—(k+1)/2. As k
rates by making the growth rate of the master genome arbi— %, this derivative goes to o= In Appendix C, we will
trarily large. For semiconservative replication, in contrastshow that unlesd =1, xg,,(x) remains finite agu— sy,
there is a maximal value to the error threshold. If the muta-assuming is finite.
tion rate exceeds this value, then no quasispecies will exist, In this sense, then, imperfect lesion repair is similar to
independent of the growth rate constant of the viable geeonservative replication. The reason for this behavior is that,
nomes. when lesion repair is imperfect, the correlation between the

The reason for this difference in behavior is that conserparent and daughter strands is broken. Therefore it is pos-
vative replication preserves a copy of the original genomesible that an erroneous daughter strand is synthesized, but
Therefore, no matter how high the mutation rate, by replicatthat the errors are not communicated to the parent strand. On
ing fast enough, it is possible to produce viable genomes at a subsequent replication cycle, the undamaged parent strand
sufficient rate to out-replicate the unviable genomes, andnay be reintegrated into a master genome. Near the error
thereby localize the population to a well-defined quasispeeatastrophe, where the effective growth rate of the viable
cies. With semiconservative replication, the original genomegenomes is close to that of the unviable genomes, this effect
is destroyed by the replication process. Therefore, on aveslows down the rate at which the fitness decreases, leading to
age, it is necessary for a viable genome to produce at leastfinite value fOI’Kéqu”(,u,crit).
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FIG. 4. Comparison of theory and simulation results|fo®. FIG. 6. Comparison of theory and simulation results for
| =00,
Interestingly, forl =oc, the derivative at the error catastro-
phe becomes infinite ds—oe for A>0. trophe is reached, aty=2In2, then lesion repair no
longer reduces the error rate by a sufficient amount to avoid
C. Stochastic simulations the death of the population. At this point, it becomes advan-

tageous to turn lesion repair off. With lesion repair turned
off, any replication mistakes that are made remain in the
o : o g augher strand. Thus the parent strand is preserved, and
of replicating organisms. Specifically, we determinett  gjnce the master genome can tolerate some lesions, it is still
=o0) at various values ok for 1=0 (Fig. 4), 1=1(Fig. 5, and  sssible to produce a viable genome. On a subsequent repli-

|=c (Fig. 6. We considered genomes of length 40, andcation cycle, the unchanged parent strands can be reinte-
populations of 1000 organisms. Our results were obtained byated into a master genome.

averaging over ten independent runs, where each run con-

sisted of 10 000 time steps of size 0.01. We téekLO (see

Appendix D for details VI. CONCLUSIONS AND FUTURE RESEARCH
Note the excellent agreement between theory and simula-

tion. One interesting feature to note is that ferl, the \

=1 fitness is slightly larger than the=0 fithess for almost

all u below the error catastrophe. However, thel error

In order to compare the results of our theory with actual
numerics, we ran stochastic simulations of finite population

This paper developed the infinite sequence length, Ham-
ming class based quasispecies equations suitable for describ-
ing semiconservative replication with imperfect lesion repair.

catastrophe hapoens before the0 error catastrophe. con- The work presented here may be regarded as a continuation
P bp bhe, of both the work in[27] (which provided the quasispecies

sequently, there is a region where theO fithess becomes . . . o
equations for semiconservative replication, under the as-

greater. We give a possible explanation for this phenomeno.ns.umption of perfect lesion repaiand[30] (which first intro-

Be'OVY the error _catastrophg, Itis aqvantaggoug 0 malntalHuced the imperfect lesion repair equations and derived the
the highest replication fidelity possible, which is done byinitial analytical results for the model

maximizing the lesion repair efficiency. A tolerance of one . s ,

S - i . We solved the model for a generalized “single-fitness-
lesion is not sufficient to provide a selective advantage for N . .
o ; . peak” landscape where the master genome can sustain a fi-
inefficient lesion repair. However, when the=1 error catas- . . L9

nite number of lesions and remain viable. For future re-

search, it will be interesting to consider the behavior of the

A =0, Theory model for more realistic landscapes. Specifically, we would
A =0, Simulation <+ . . .

A= 1, Theory s like to explore the behavior of the model when a genome is
s A =1, Simulstion X viable even for positive values &f. In the original semicon-
servative quasispecies equations, a fitness landscape which
allows for a finite number of point mutations before loss of
viability does not delay the occurrence of the error catastro-
phe beyond what is predicted in the single-fithess-peak
model [22]. We expect this result to change when lesion
repair is imperfect.

10

Mean Equilibrium Fitness

ACKNOWLEDGMENTS

This research was supported by the National Institutes of
Health. The authors would like to thank Yisroel Brumer and
FIG. 5. Comparison of theory and simulation resultslfot. Eric J. Deeds for helpful conversations.

061915-10



IMPERFECT DNA LESION REPAIR IN THE... PHYSICAL REVIEW E 70, 061915(2004)

APPENDIX A: TWO SUBCASES OF THE ARBITRARY 2. The A=0 equations

LESION REPAIR EQUATIONS When lesion repair is turned off, Brumer and Shakhnov-
1. The A=1 semiconservative equations ich showed that the semiconservative quasispecies equations
. can be transformed into equations which are similar in form
When A=1, it follows that p((¢”,o”),(c,0")) d

N . . . to the conservative quasispecies equat . We rederive
=5;.p((o",d0"),(o,0)), since, with perfect lesion repair, all d P quatiaty

o ! 2 9" this result using our sequence-pair formalism.
postreplication lesions are removed. Thereforegif o, For this derivation, we make the assumption that,, is

then a constant € for all genomes. This implies that
V(0,01 - p((e”,0"");0") does not depend a”, hence the term may
dt' == [Kg,on + €O]Y(0,0)- (A1)  be dropped from the notation. Since lesion repair is turned

off, we havep((¢”,d”),(o,0"))=8,4,p(o,0"). This gives,
This implies that genomes with lesions will eventually dis- d
appear from the population. Furthermore, if an initial popu- Do =~ [Kor) + KO Y0 + > KoY (o P(T, )

lation of genomes is lesion-free, then no lesions will appear  dt o
in the population, hence in such a case we may take)

=0 for o’ # 0, and restrict our dynamics to the space of + 2 Ko Yo PO, 0). (AB)

complementary ordered sequence-pairs, dendtedr)}. We o’

then have Now, define y,==,Y(e) Also, define «,

dYios) o =2, K(g.oY(o.0n! Yo We then have
dt == [K((r,(?) + K(t)]y(u',;) + 2 K((J”,F’)y((r',?) dy
B T gt = e KON+ KoY+ 2 k1Y orp(0” o)
X [p((a’,0"),(0,0)) + p((0”,0"),(0,0))]. o

(A2) =2 KoY P, 0) = k()Y (A7)

(o

Now, for A=1 note that
Du(o”.0) where we have used the fact thaf p(o,0’)=1.
r = | &ty | Note that we have transformed the semiconservative qua-
p((o- O ):(0'15')) -

2(S-1 sispecies equations into a set of equations that look like the
L-Dy(0" o) conservative equations, Fhe key difference being th_at. the fit-

><<1 _ E((r’,(r’)) (A3) nessess, are concentranon-dfependent. However, it is pos-
2 sible to show that when the fitness depends on only one of

) _ the strands, then the conservative equations are obtained ex-
Note then that sincdy(a”,0)=Dy(a”’,0), we have that gy [30].
p((e’,0"),(c,0))=p((c’,0"),(c,0)), and so
APPENDIX B: DERIVATION OF THE INFINITE

Y059 — SEQUENCE LENGTH EQUATIONS
e I U (0 . . . . o
t In this appendix, we will derive the infinite sequence
/ length form of the imperfect lesion repair equations. We be-
+ E K(o”,;’)y(a",;’)p((o- :?),(O'ya) 9 P P q

gin by first showing that, for sequence pafrs,o’) of the
first class )y, ., depends only o, I, Iz, andlg. We note
+ K@ .onY@.onP(a’,a"),(0,0)) that this certainly holds at=0, given our initial conditions.
o' In order to prove that this holds at all times, we need to show
S e that, ify., ., depends only o, I, I, andlg at some time
t, thendy,, ,/dt depends only o, I, Ig, andlg.
+2> Ko 5 Yo aP(a’,a"),(0,0)). (Ad) We should note that our “proof” will not be strictly rigor-
o’ ous, since it will consider finite sequence length equations
while still assuming that the first class and second class se-
quence pair dynamics may be treated as separate quasispe-

o

Deﬁning ya'zy((r,{a)’ (o €(o,0) and Kg= K(g,0) gives

Do’ o) cies. Nevertheless, since we are passing to the limiteo,
dy — (% H . ..
=29 = [k, + KO, + 2D Kyry ( v ) we can assume that is sufficiently large to make the cor-
dt 7 T TTT\2(s-)) rection terms to our equations negligible, and eventually 0, in
) the limit.
€, |- PHE ) In the procees of deriving the infinite sequence length
x|1 T ' (A5) equations, we will introduce a number of additional defini-

tions, which are illustrated in Fig. 7.
which are exactly the original semiconservative equations So, suppose that at some timefor all sequence pairs
derived in[27]. (o0,0") we have thay, ., depends only off, I, Ir, andlg.
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FIG. 7. (Color onlinglllustration of the various definitionk; ;,
lc2 Ic,a 11, 15, andlj.

Then we may writQ/(w,):y(,CJLJRJB), and so, Eq(9) gives

Ay i, inlo) _
C—st = [Kicd Irly T KDY Ielp)
+ 2 KigromY(onem X P(a”",0"),(0,0"))
((rll’(r’//)
+ 2 K" omY(om.om X P((0”,0™),(07,0)).
(UJI,OJH)

(B1)

We proceed as follows: Gives: ando¢, then among the

subset of positions wherec and oy are identical, letlc ;

denote wherev?. differs from oc. Among the subset of po-

sitions whereo¢ and oy, differ, let I, denote wheres{ is
identical to o. Finally, whereoc differs from oy, let I¢ 3
denote the number of positions wherg differs from both
oy and oc. It is clear thatDy (o, 0¢)=lc1+lc ot 3 Fur-
thermore, to have a nonzero valuep§to”,d”),(o,0"')), we
must haveoy =onc. Since the sequence pdio,o’) con-
sists of | +Ig+Ig lesions, it follows thatLyc=I, +Ig+lg,
giving

dY(IC,II_,IR,IB)

dt = ‘[K(|

o T Oy

clulrl clulrl

IC,l:O

PHYSICAL REVIEW E70, 061915(2004

\e >|C,1+|C,2+|C,3

p((o”,0"),(0,0")) = (Z(S_ 5

A [HcTR e le e 2 le s
X|1-€ll- >

" (6(1 _)\))IL+IR+IB.
S-1

We now need to characterize tl&": Where o’ differs
from oy, let1] denote the number of sites wher& and o’
are complementary, anld the number of sites where” is
noncomplementary to” but differs fromay. Let I3 denote
the number of sites wher@’ is identical too, whereo” is
noncomplementary te”. Then we havd¢=17, I =Ic1+Ic
+ +lg—lc—17-15, 1§=13, andlg=15.

We defineC"(Ic 1,lc2,lc3ilc, L. Ir,Ig) to be the number
of ¢” characterized byc 1, Ic 2, andlc 3. We have

(B2)

C'llcplealesilelulrlp)

()

% <|C - |C,2>(S_ 1)|C:1(S— 2)|c,3,

(B3)
lcs

wherelc ; ranges from 0 td.— I —Ig—Ig—I¢,lc > ranges from
0 tolc, andlc 3 ranges from O tdc—Ic 5.

For each such choice of ¢, we define
C"(17,15,15;1c, 1L R By I 1,1 2, ¢ ) tO be the number o™
characterized by, 15, andl3. We have

" non o n.
C (|1, pal 31IC!IL!|R1|B1|C,11|C,21IC,3)
n
_<Ic,1+IL+IB+IC—Ic,z)<lc,l+|L+IB+IC—IC,2—|1)

] i F
L_I _I _I _l +| " n
X ( ot “)(S—zﬂz(s— 5. (B4
3
We may perform a similar analysis do”, o), which is
characterized by the parametégs I, I, andlg. The qua-
sispecies equations then become

n
L=l -lg-lg-le e 'C"C,z|c,1"‘|L+|B+|C"C,2'C,1+|L+|B+|C‘|C,2‘|1 L_IC,l_lL_lB_IC"'IC,Z

ot 2 2 2 > > >

| =0 | =0 "”_ ”_ "_
C2 C3 |1—O |2—0 |3—0

. "oy,
X C'llculecalesilelulrlp)C (L1151 L IR B c 1 lc 2l d)

XK+ H - + +

=y

n
ettt e o 151515)Y (716 14 HgH ol 11151515

( e )'c,1+|c,2+|c,3( e(1-N) )|L+|R+|B
>< S
2(5-1) S-1

n
Ll -lglg-lc Ic Iclez e atrtlstlclc 2 leatlrtletliclc 2711 Ll 1 Ir-lg-Ictlc 2

A [FcRleleale 2 e s
X{l—e(l—iﬂ 2

Ic,1=0

”

> X > > >

| =0 | =0 "_ "”_ ”_
C2 C3 |1—0 |2—0 |3—O

" . mnopn o " .
X C"(lcnlcalcsilelrlLlg)C"(LIG 15 e IR L c 1 lc 2l e 3)

>< K(IN | +| _|//_|// |// |// " | +] o+ o+

% \e
IN_IN IN |12/)

pleatrtlgtlcle 2711510, z)y( pleatlrtlgtlcle 2711503

>|0,1+|C,2+|C,3< e(l-\) )|L+|R+|B

2(S-1) S-1
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A\ |FcRlelcalc 2 e s
X[1-€l1- > . (B5)

We now use the binomial theorem and sum oley, giving

”
L_IL_IR_lB_IC IC lC,l+IL+IB+|C_IC,2 |C,l+IL+IB+|C_IC,2_|l L_IC,l_lL_lB_IC+|C,2

2 X X > >

| =0 | =0 "n_ "_ "_
c1 C.2 17=0 15=0 13=0

n
% <L_IL_IR_|B_IC>( lC )(IC,1+IL+IB+IC_IC,Z)(IC,1+IL+IB+IC_IC,2_I1)
n "
|01 lc2 17 13

dYael,. ') _

dt ~lxg

ltele) T KOsl inly +

= lc+lc,
ci—li-lg-lc "
X I ?)(s-1'5(5-2)"2 % (11 1+ HgH el 1m0 Y1 e 1+ +HgH e o -10112)

()\_>|C 1( )'c,z( e(1 —)\)>IL+IR+|B " [1 ~ (1 _ E)]L_lL_lR_IB_lc_IC,l
2 2(S-1) S-1 72

X
1 lc-le, Flrdele o IcHrHBHc e 2 ot R Bl 1] Ll 1= Ir-lg-lctlc 2
X 1—6 1- )\ 1-
2(S- 1)”

2 X X >

lc=0  lgo=0 _ _ _
c,1 c,2 I7=0 15=0 15=0
n
% L-I —lg- lc\[ lc \[lcatlr*lgtlc=lco\(lca+Ir+lg+lc—lco—I]
I I |U III
c1 c2 1 2
L-lcq— ~le+le,
1" "
X I ?J(s- 1ls(s-2)2 x K(1 1 gt el e om0 Y07 HgHgH e 11-101010)

(M)'Cl( >|C2< 5(1—)\)>|L+IR+|B
X
2(S-1) s-1

A\ LR el 1 Ic-lc2
X{l—e(l—a)} 1—6|:1—)\<1—2(S_1)):| . (B6)

Note that this expression depends onlylgnl, |g, andlg, hence our claim tha, ,, only depends of, I, Ig, andlg is

established. We now proceed to formally take the oo limit.
We defineC(l¢, I, ,Ir,lg) to be the number of sequence pairs characterizel¢ by, I, Ig, and note that

L!
ClclLlrlp) = S-1 It gt S-2 IB_ 87
(Iclulrlp) [t R IgN (L= =1L _|R_|B)!( ) ( ) (B7)
We therefore have thatg  1.1,=Clc, IR 8)Yig, igly- FrOm this expression, and using the fact th@&f i i,
=Clial lply We obtain
Tl inte - Ll-lgrlgle e leatlitigtlele leatliHeticle a1 Lol il -lg-lctc 2
% =~ (Kol g + KOIZ11 i1y + D S 3 S S
Ic1=0  Ic =0 =0 =0 oo
x <|L+'B+'°'1+'C"cz)('ﬁ'B+lc-lc,z><lL+IB> y (L—|L—|B—|c,1—|c+|C,z)<L—|L—|B—|c,1—|c)
e le=lec. I lc,2 Ir
Ne |ler/Ne)lc2 A [FotRe el 1 lc-lc2
x = 1-e1-2 1-¢1-2[1-
Z(S_ 1) 2 2 2(8_ 1)
! |
[ €=M\t e(l-N)(S-2)\B
X[e(1-N)] R( S-1 S-1 XK1 41+ g el oI 1, HgH ol - I21D)
L=l -lg-lg-lc Ic IC:1+|R+|B+|C_ICv2IC,1+|R+|B+|C_|Q2—|I T A N Y T
+ E > > E E ( rtlgtlcitlc 2)
o0 leZ® 1o 10 14=0 lca

X<|R+|B+IC_IC,2)<|R+IB) % (L_IR_IB_IC,1_|C+lC,2)<L_|R_IB_IC,1_IC>
lc—lc2 Ir lc.2 I

061915-13



TANNENBAUM, SHERLEY, AND SHAKHNOVICH PHYSICAL REVIEW E70, 061915(2004

8 (2(;\f 1) )ICJ()\?EyQZ{l B E(l - %ﬂblrlwlvlc_lc’l{l - 6{1 - x( 1- ﬁ)} }'C"Cz

~N) |/ (1 -\)(S-2)\'s
><[6(1—7\)]'L<E(Sl_ i\)> <E(1 S)\z(l )> XK1y

_ U UALAL ” _ My . 88
HigHgH oo o 11115107 I +HgHgH e o 1i-131515) (B8)

Now, it may be shown in the limit of infinite sequence <|L+ |B+|C_|C,2)<IL+IB)
length that only thec ;=0 terms contribute to the sum. This

corresponds to the neglect of backmutations in the limit of
infinite sequence length. The proof that >0 terms may be e(1-M)(S-2)\'3( e(1-))
neglected is fairly tedious, but is similar to the arguments S-1 S-1

given in [25,27. Therefore we do not give details in this
paper. Regarding the remaining terms, we may note that

lc=lco I

I
) — 8 00,0 (B9

The last statement implies that genomes wih-0 and
genomes witH,, Iz simultaneously>0 cannot be produced
by replication. Therefore, if our initial population distribu-

L=l —lg=lc+lco\ [ Ne)c2 A e r e tion is such_thaiz(,o,_Ly,_Rv_|B>o):0 g_ndz(|c,|L>o,|R>o,|B)=0 (as'is
' <?> —6(1—5) the case with our initial conditionsthen we may assume

lc2 thatz

C'IL'IR‘|B>0):0 andZ(|C’|L>0’|R>O’|B):O at all times.

i()\_ﬂ)'c,z _L(1-N2) Putting e\/_erythir)g together gives us the infinite sequence
- e\ 2 e ' length equations given in E@l4).
APPENDIX C: DETERMINATION OF lim .- #lqui( )
To evaluatexg,,(u) for arbitrary lesion repair, we start
(L -l -lg- Ic)[e(1 VR i[,u(l VTR, with the fact that foru < uerit, Kequilu) satisfies
lr Ig! 0= Kequil(:“«)2 = A(u,N) Kequil(ﬂ) —B(u,N). (Cy

Differentiating both sides gives

1 lcle2 0= 2KequithlequiI = 3, AKequil = AK(,aquiI - d,B. (C2
l-€el1-N\1- -1, L
2(S-1) When u= it We havexgqy =1, giving

!

e"‘(l‘”z){ (1 - %)[2 +fi(w )] - (1 —x)ﬁ_lw,x)} + %e‘”m)

equil — k 3+ fl(M’)\)e—M(l—)\/Z) _ e—,u()\/2) _ k{[l + fI(M')\)]e—M(l—)\/Z) _ 1}

|:<1 - %)fl(lu'!)\) - (1 - )\)f|(,u,,)\)i|e_ﬂ“(l_)\/2) - %e—,u()\/Z)

3+ f|(,u,)\)e‘“(1‘“2> — g rN2) _ K{[1+ f|(u,)\)]e‘“(1"‘/2> -1 )

(C3

where we used the identitg fi(x,\)=(1=N)fi_y(u,N). +e#ei1M2 -1 =0. However, we have shown that., is
Note that the numerator of the first fraction is positive forinfinite if and only if [1 +f|(,ucm,)\)]e‘f‘crit(l‘“z)—?tzo.
>0 (where we are neglecting the factor ok)-so ask  Therefore, ifxgq; is infinite, then we must hav&(uci, \)
—o0 and p— g if [1+Fi(peir, N)]e#ei@N2-1=0,then =gt N=f_(u.,\). For finite |, note that f,(teic,\)
Kequi— . Conversely, if{1+f(ucip, N)]e#eit?MD =120, <f,(ueq,N), with equality only whenug;(1-\)=00 X
then the denominator ensures that the derivative remains 1.
nite. Therefore, forfinite |, lim
Now, at the error catastrophe, we hav& g, \) k—o as long as\ < 1.
=1-B(uerit,\). Therefore, plugging into our expression for ~ Whenl=c, then keqi( 1) =k(€#N2+e#17M2 1) below

we get thatkeg,; is infinite if and only if e#eiM2  the error catastrophe. It is readily shown that, except\for

, e
p— g Kequil ) remains finite as

’
Kequil!
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=0, the derivative at the error catastrophe becomes infinite as At each time step, we cycle over each organism in the

K— o0,

APPENDIX D: NOTES ON THE IMPLEMENTATION OF
THE STOCHASTIC SIMULATIONS

population and determine whether it replicates in that time
interval. The replication probability, ,,, of an organism
with genome{o,o’'} may be computed from the first-order
growth rate constant in one of two wayspy,
=min{x;, 1AL, 1}, or py, =1-€" oo In practice, we

Stochastic simulations are run using a finite population otthooseAt to be sufficiently small so that the two definitions

N replicating genomes of length The simulation is run out
to some prespecified time at time steps of some prespeci-
fied At. We try to chooseT large enough to obtain good
equilibration of the population, anfit small enough so that
one can reasonably make a continuous time assumption.

yield almost identical results.

If an organism replicates, then it is effectively destroyed,
and it produces two new organisms. At the end of each rep-
lication cycle, we randomly remove organisms from the
population until the population size returnsio
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